• Title/Summary/Keyword: pico slider

Search Result 12, Processing Time 0.015 seconds

A Microcatuator for High-Density Hard Disk Drive Using Skewed Electrode Arrays (경사 전극 배열을 이용한 고밀도 하드 디스크의 마이크로 구동부 제작)

  • Choi, Seok-Moon;Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.6-15
    • /
    • 2011
  • This paper reports the design and fabrication of a micro-electro-mechanical-system(MEMS)-based electrostatic angular microactuator for a dual-stage servo. The proposed actuator employs a novel electrode pattern named "skewed electrode array(SEA)" scheme. It is shown that SEA has better linearity than a parallel plate type actuator and stronger force than a comb-drive based actuator. The moving and the fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, an electrostatic FE analysis was carried out and an empirical force model was established for SEA. A new assembly method which will allow the active electrodes to be located beneath the slider was developed. The active electrodes are connected by inner and outer rings lifted on the base substrate, and the inner and outer rings are connected to platform on which the slider locates. Electrostatic force between active electrodes and platform can be used for exiting out of plane modes, so this provides the possibility of the flying height control. A microactuator that can position the pico-slider over ${\pm}0.5{\mu}m$ using under 20 volts for a 2 kHz fine-tracking servo was designed and fabricated using SoG process.

  • PDF

Effects of Smooth and Textured Disks on Tribocharge build-up at a Head Disk Interface of HDD (HDD에서 Smooth 디스크와 Texture 디스크가 IDI의 마찰대전에 미치는 영향)

  • Lee Dae-Young;Lee Rae-Jun;Kang Pil-Sun;Han Je-Hee;Hwang Jungho;Kim Dae-Eun;Cho Keung-Youn;Kang Tae-Sik
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.96-102
    • /
    • 2005
  • The tribocharge build-up in the slider disk interface can cause ESD (electrostatic discharge) damage. In turn, ESD can cause severe melting damage to MR or GMR heads. We investigated the tribovoltage/current build-up with smooth and textured disks in HDD, operating at increasing disk accelerations. We found that tribe-voltage/current were generated during pico-slider/disk interaction and those levels were about 0.1 ${\~}$ 0.3 V and 10 ${\~}$ 40 pA, respectively. Tribovoltage/current were abruptly increased and dissipated within the acceleration time in the case of textured disk but in the case of smooth disk tribovoltage was continuously increased until the end of uniform velocity region and the tribocurrent did not dissipate within the acceleration time. In the case of textured dist tribovoltage/current was reduced with increasing disk acceleration, but in the case of smooth disk it was increased.

  • PDF