• Title/Summary/Keyword: phytotoxic

Search Result 150, Processing Time 0.035 seconds

Uptake of Butachlor by Rice Seedlings and Its Phytotoxic Action to the Physiological Activities (수도묘(水稻苗)의 Butachlor 흡수(吸收) 및 약해발생(藥害發生) 특성(特性)에 관한 생리적(生理的) 연구(硏究))

  • Chung, Bong-Jin;Kwon, Yong-Woong
    • Korean Journal of Weed Science
    • /
    • v.1 no.1
    • /
    • pp.57-68
    • /
    • 1981
  • To clarify the mode of uptake of butachlor (2-chloro-2', 6'-diethyl-N-(butoxymethyl) acetanilide) by rice seedlings, its phytotoxic action to growth and physiological activities, studies were conducted with rice seedlings, at the 6th or 7th leaf-stage, which were treated with nutrient solution containing butachlor 0, 1.8, 3.6, 7.2, 10.8 or 14.4 ppm for 1, 2 or 4 days, in other case, the solutions were thereafter renewed with the untreated nutrient solution for further growth. Uptake of butachlor by rice seedlings increased linearly with increase of its concentration and duration of uptake. Butachlor inhibited root growth more than shoot growth, furthermore, the inhibitory effect on the shoot growth was greater in height than in weight or leafing rate. After 4 day-treatment, the rates of shoot growth in weight were delayed for 4 days. Butachlor inhibited water uptake rapidly and linearly with increase of its external concentration. The reduced uptake of water was followed by slow increase in the stomatal resistance of leaves. Upon completion of butachlor treatment, rate of water uptake was recovered rapidly, but the stomatal resistance with lag in time. Butachlor did not affect the uptake of cation such as ammonium, potassium and calcium, but inhibited substantially uptake of nitrate in proportion to its concentration. Especially, butachlor did not affect synthesis and degradation of nitrate reductase. In addition, butachlor has shown much greater binding to the lipidic substances from rice roots than the proteinous material. The primary mechanism of phytotoxic action of butachlor does not seem to be its effect on the protein synthesis, but great affinity to membranes. The inhibition of water uptake, and its subsequent closure of stomates is thought very important for reduced growth under mild phytotoxicity.

  • PDF

Volatilization of molinate in paddy rice ecosystem and its concentration in air causing phytotoxicity to chili pepper (벼 재배 환경 중 molinate의 휘산과 공기 중 고추약해 발현농도)

  • Park, Byung-Jun;Choi, Ju-Hyeon;Kim, Chan-Sub;Im, Geon-Jae;Oh, Byung-Youl;Shim, Jae-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.70-80
    • /
    • 2005
  • To evaluate the exposure of molinate in agricultural environment and its effect against the non-target crop in air, this experiment was conducted to elucidate volatilization characteristics of molinate in aquatic condition and to determine critical concentration of molinate in the air causing phytotoxicity to Chili pepper. Cumulative volatilized rate of molinate from water was 22.7% at $35^{\circ}C$ for water temperature and 20 L/min for air velocity while 3.2% at $25^{\circ}C$ and 10 L/min within 47 hour after applied under closed system, respectively. The molinate concentrations in air above 60 cm height from soil surface of valley and open paddy rice field were reached the highest value of 18.17 and $11.59{\mu}g/m^3$, respectively within 24 hours after applying granular formulation at dose rate of molinate 150 g/1,000 $m^2$. However, their concentrations were drastically diminished to around 0.18 and $0.51{\mu}g/m^3$ level in 20 days after application, which volatilization pattern were similar to both regions. Also, the concentration of molinate in air above 60 cm height from soil surface was distributed higher 2 times than that above 180 cm height. Meanwhile, a phytotoxic symptom against the nearby chili pepper was revealed within three days after applied and molinate was detected $0.004{\sim}0.006$ mg/kg level from severe damaged leaves. The dose and exposure relations of molinate in the air against the non-target crop was also investigated in lab trial. The phytotoxic symptom, shriveled leaves, of the chili pepper was encountered by exposing two days with concentration of $13.6{\mu}g/m^3$, three days with $6.8{\mu}g/m^3$ or four days with $3.4{\mu}g/m^3$. The symptom was still recovered within four weeks after the plants had received fresh air. On the other hand, the phytotoxic response through root uptake of the herbicide in water culture was relatively insensitive, in which the symptom is observed ten days with the concentration of 300 ${\mu}g/L$.

Reduction effects of N-acetyl-L-cysteine, L-glutathione, and indole-3-acetic acid on phytotoxicity generated by methyl bromide fumigation- in a model plant Arabidopsis thaliana (모델식물 애기장대에 대한 훈증제 메틸브로마이드의 약해발생 및 N-acetyl-L-cysteine, L-glutathione, indole-3-acetic acid의 약해억제 효과)

  • Kim, Kyeongnam;Kim, Chaeeun;Park, Jungeun;Yoo, Jinsung;Kim, Woosung;Jeon, Hwang-Ju;Kim, Jun-Ran;Lee, Sung-Eun
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.3
    • /
    • pp.354-361
    • /
    • 2021
  • Understanding the phytotoxic mechanism of methyl bromide (MB), an essential fumigant during the quarantine and pre-shipment process, is urgently needed to ensure its proper use and reduce international economic losses. In a previous study, two main MB-induced toxic mechanisms such as reactive oxygen species (ROS) and auxin distribution were selected by analyzing transcriptomic analysis. In the study, a 3-week-old A. thaliana was supplied with 1 mM ROS scavengers [N-acetyl-L-cysteine (NAC) or L-glutathione (GSH)] and 1µM indole-3-acetic acid(IAA) three times every 12 h, and visual and gene expression assessments were performed to evaluate the reduction in phytotoxicity by supplements. Phytotoxic effects on the MB-4h exposed group were decreased with GSH application compared to the other single supplements and a combination of supplements at 7 days post fumigation. Among these supplements, GSH at a concentration of 1, 2, and 5mM was suppled to A. thaliana with MB-fumigation. During a long-term observation of 2 weeks after the fumigation, 5 mM GSH application was the most effective in minimizing MB-induced phytotoxic effects with up-regulation of HSP70 expression and increase in main stem length. These results indicated that ROS was a main key factor of MB-induced phytotoxicity and that GSH can be used as a supplement to reduce the phytotoxicity of MB.

Physiological Response of Rice to Metolachlor Herbicide (제초제(除草劑) Metolachlor에 대한 수도(水稻)의 생리적(生理的) 반응(反應))

  • Lee, Tai-Heui;Kim, Kil-Ung
    • Korean Journal of Weed Science
    • /
    • v.2 no.1
    • /
    • pp.13-19
    • /
    • 1982
  • The effect of metolachlor [2-chloro-N-(2-ethyl 1-6-methylphenyl)-N-(2-methoxy-l-methylethyl)-acetamide] on starch, sugar and protein content in relation with ${\alpha}$-amylase activity, and its interaction with GA in the germinating stage of rice were determined. The distinctive phytotoxic symptom was the failure of the primary leaf of rice to break the coleoptile. An inhibitory effect of metolachlor was nullified by the external application of GA $10^{-3}$M. A significantly slower starch degradation accompanying the lower content of sugars was observed in the gain of the metolachlor treated seedlings. Further, the total ${\alpha}$-amylase activity was significantly lower in the grain of rice seedlings treated with metolachlor than that of the untreated one, and the lower total ${\alpha}$-amylase activity could be due to an inhibition of ${\alpha}$-amylase formation.

  • PDF

Phytotoxic Response of Some Fruit Trees to Oxyfluorfen (Oxyfluorfen 처리(處理)에 따른 과수종(果樹種) 및 품종간(品種間)의 약해반응(藥害反應))

  • Cho, Y.W.;Pyon, J.K.;Guh, J.O.
    • Korean Journal of Weed Science
    • /
    • v.7 no.3
    • /
    • pp.337-347
    • /
    • 1987
  • Spary and vapor drift injuries of apple, pear, and peach seedling caused by soil-applied oxyfluorfen were studied in a greenhouse. Bud bursting rate of all fruit trees was reduced by both spray and vapor drifts of oxyfluorfen, but reduction in bud bursting rate of pear and peach was greater than that of apple trees. Reduction in the number of leaves per shoot of apple and peach was greater than that of pear trees. Leaf injury of pear was most severe and occurred earliest, but leaves of peach were least injured, Leaf injuries of pear and apple were caused by both spray and vapor drifts, but leaves of peach was injured largely by vapor drift. Reduction in shoot growth of and pear was greater than that of peach trees. Shoot growth of pear was more rapidly retared compared with apple trees. In the field, oxyfluorfen delayed the time of bud bursting in young apple trees. Oxyfluorfen applied between initiation and completion of bud bursting delayed bud bursting more than earlier application although ultimate number of bursted buds was similar to control. The number of leaves per shoot and total length of shoots were lower than control until 40 days after application of oxyfluorfen, and then were similar to control because of vigorous growth after May.

  • PDF

Identification and Biological Activity of Two New Phytotoxins Isolated from Botrytis cinerea (Botrytis cinerea로부터 분리한 두 개의 새로운 phytotoxin의 구조 결정 및 생물활성)

  • Kim, Geum-Jung;Yoon, Mi-Young;Kim, Heung-Tae;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Park, Myung-Soo;Cha, Byeong-Jin;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.15 no.2
    • /
    • pp.112-119
    • /
    • 2009
  • We discovered two novel phytotoxins produced by the pathogenic fungus, Botrytis cinerea. Among the twenty-five B. cinerea isolates, which were obtained from various host plants in 1994 and 1996, twenty-two showed strong or moderate pathogenicity on five plants such as cucumber, tomato, red pepper, tobacco and Chinese cabbage. The culture filtrate of the B. cinerea 2-16 strain showed the most potent phytotoxic activity in a tobacco leaf-wounding assay. Two novel phytotoxins were isolated from the liquid cultures of B. cinerea 2-16 by ethyl acetate extraction, flash silica gel column chromatography, silica gel column chromatography, Sephadex LH-20 column chromatography, preparative TLC and subsequently preparative HPLC. Their chemical structures were determined to be 3-O-acetyl botcinol and 3-O-acetyl botcinolide, respectively, by mass and NMR spectral analyses. These two phytotoxins caused leaf necrosis in a leaf-wounding bioassay, and significant electrolyte leakage from leaf tissues of tobacco. In the two bioassays tested, 3-O-acetyl botcinol exhibited stronger phytotoxic activity than 3-O-acetyl botcinolide. This is the first report on the production of both 3-O-acetyl botcinol and 3-O-acetyl botcinolide from B. cinerea.

Herbicidal Characteristics of Soil Bacteria Actinomycetes G-0299 to Southern Crabgrass (토양 방선균 Actinomycetes G-0299의 바랭이에 대한 선택적 살초특성)

  • Choi, Jung-Sup;Kim, Young Sook;Kim, Jae Deok;Kim, Hye Jin;Ko, Young-Kwan;Park, Kee Woong;Moon, Surk-Sik
    • Weed & Turfgrass Science
    • /
    • v.6 no.3
    • /
    • pp.212-221
    • /
    • 2017
  • An actinomycetes isolate G-0299 obtained from a forest soil showed strong phytotoxic activity to Digitaria ciliaris. For the foliar application study, the culture filtrate of the isolate G-0299 showed strong herbicidal activity only to D. ciliaris among the 12 monocot and 5 dicot weed species. And herbicidal activity at a concentration of 500, 250, 125 and $62.5{\mu}gmL^{-1}$ of culture filtrate was 100%, 98%, 70% and 40%, respectively. Phytotoxic symptoms of the culture filtrate by foliar application were desiccation and burn-down or bleaching of leaves and finally plant death. And then the herbicidal activity was exhibited only under the light condition. Also, chlorophyll loss of D. ciliaris leaf tissues in the light condition was much higher than in the dark condition and then chlorophyll content decreased 82%, 5%, respectively. In conclusion, our results suggest that soil bacteria, isolate G-0299 could be a good candidate for new bio-herbicide and provide a new lead molecule for a more unique herbicide.

Antifungal Activity of a Synthetic Cationic Peptide against the Plant Pathogens Colletotrichum graminicola and Three Fusarium Species

  • Johnson, Eric T.;Evans, Kervin O.;Dowd, Patrick F.
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.316-321
    • /
    • 2015
  • A small cationic peptide (JH8944) was tested for activity against a number of pathogens of agricultural crops. JH8944 inhibited conidium growth in most of the tested plant pathogens with a dose of $50{\mu}g/ml$, although one isolate of Fusarium oxysporum was inhibited at $5{\mu}g/ml$ of JH8944. Most conidia of Fusarium graminearum were killed within 6 hours of treatment with $50{\mu}g/ml$ of JH8944. Germinating F. graminearum conidia required $238{\mu}g/ml$ of JH8944 for 90% growth inhibition. The peptide did not cause any damage to tissues surrounding maize leaf punctures when tested at a higher concentration of $250{\mu}g/ml$ even after 3 days. Liposomes consisting of phosphatidylglycerol were susceptible to leakage after treatment with 25 and $50{\mu}g/ml$ of JH8944. These experiments suggest this peptide destroys fungal membrane integrity and could be utilized for control of crop fungal pathogens.

Efficacy of Fungicides for the Control of Leaf Spots on Eriobotrya japonica and Photinia glabra (비파나무 및 홍가시나무 점무늬병의 살균제 방제효과)

  • Seo, Sang-Tae;Shin, Chang-Hoon;Ji, Kwon-Hyeok;Park, So-Young
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.410-412
    • /
    • 2011
  • Since the late 2000s, a serious Entomosporium leaf spot disease, caused by Entomosporium mespili, has been found frequently on leaves of Eriobotrya japonica and Photinia glabra at a nursery station in Goheung and Jeju, respectively. Studies were conducted to select fungicides that would effectively control Entomosporium leaf spot. Among the three fungicides tested, weekly foliar applications of propiconazole and chlorothalonil effectively reduced disease severity on E. japonica and P. glabra showing control value of 64.1% and 87.6%, respectively. Weekly treatments of thiopanate methyl were less effective. Propiconazole controlled the disease, but, it was phytotoxic to P. glabra.

Exploring the Potential of Bacteria-Assisted Phytoremediation of Arsenic-Contaminated Soils

  • Shagol, Charlotte C.;Chauhan, Puneet S.;Kim, Ki-Yoon;Lee, Sun-Mi;Chung, Jong-Bae;Park, Kee-Woong;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.58-66
    • /
    • 2011
  • Arsenic pollution is a serious global concern which affects all life forms. Being a toxic metalloid, the continued search for appropriate technologies for its remediation is needed. Phytoremediation, the use of green plants, is not only a low cost but also an environmentally friendly approach for metal uptake and stabilization. However, its application is limited by slow plant growth which is further aggravated by the phytotoxic effect of the pollutant. Attempts to address these constraints were done by exploiting plant-microbe interactions which offers more advantages for phytoremediation. Several bacterial mechanisms that can increase the efficiency of phytoremediation of As are nitrogen fixation, phosphate solubilization, siderophore production, ACC deaminase activity and growth regulator production. Many have been reported for other metals, but few for arsenic. This mini-review attempts to present what has been done so far in exploring plants and their rhizosphere microbiota and some genetic manipulations to increase the efficiency of arsenic soil phytoremediation.