• Title/Summary/Keyword: phytoplankton cell viablility

Search Result 1, Processing Time 0.013 seconds

Applicability of Fluorescein Diacetate (FDA) and Calcein-AM to Determine the Viability of Marine Plankton (FDA와 Calcein-AM 방법을 이용한 해양플랑크톤 생사판별기법)

  • Baek, Seung-Ho;Shin, Kyoung-Soon
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.349-357
    • /
    • 2009
  • Ballast water is widely recognized as a serious environmental problem due to the risk of introducing non-indigenous aquatic species. In this study we aimed to investigate measures which can minimize the transfer of aquatic organisms from ballast water. Securing more reliable technologies to determine the viability of aquatic organisms is an important initiative in ballast water management systems. To evaluate the viability of marine phytoplankton, we designed the staining methods of fluorescein diacetate (FDA) and Calcein-AM assay on each target species belonging to different groups, such as bacillariphyceae, dinophyceae, raphidophyceae, chrysophyceae, haptophyceae and chlorophyceae. The FDA method, which is based on measurements of cell esterase activity using a fluorimetric stain, was the best dye for determining live cells of almost all phytoplankton species, except several diatoms tested in this study. On the other hand, although fluorescence of Calcein-AM was very clear for a comparatively longer time, green fluorescence per cell volume was lacking in most of the tested species. According to the Flow CAM method, which is a continuous imaging technique designed to characterize particles, green fluorescence values of stained cells by FDA were significantly higher than those of Calcein-AM treatments and control, implying that the Flow CAM using FDA assay could be adapted as an important tool for distinguishing living cells from dead cells. Our results suggest that the FDA and Calcein-AM methods can be adapted for use on phytoplankton, though species-specific characters are greatly different from one organism to another.