• Title/Summary/Keyword: phytochemical compound

Search Result 104, Processing Time 0.022 seconds

Involvement of Early Growth Response Gene 1 (EGR-1) in Growth Suppression of the Human Colonic Tumor Cells By Apigenin and Its Derivative Isovitexin (Apigenin과 대사물 isovitexin에 의한 인체 대장암세포의 세포활성 억제효과에 있어서의 EGR-1의 역할 연구)

  • Moon, Yu-Seok;Cui, Lei-Guang;Yang, Hyun
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.110-115
    • /
    • 2007
  • It has been previously described that transcription factor early growth response gene product 1 (EGR-1) functions as a tumor suppressor gene. This study was conducted to demonstrate that EGR-1 induction by phytochemical apigenin and its derivative isovitexin can mediate the growth suppression of the intestinal epithelial tumor cells. Apigenin and isovitexin induced EGR-1 gene expression both in the dose and time-dependent manners. Moreover the induction was relatively late around 9-12 hr after treatment of HCT-116 cells, while several anti-inflammatory agent such as NSAIDS and catechins elicit the ECR-1 gene expression at much earlier time about 1-3 hr after treatment. In terms of signal transduction, ERK1/2 was critical for apigenin-induced EGR-1 gene expression and its promoter activation. When EGR-1 gene expression was blocked with EGR-1 small interference RNA, the cytotoxicity of apigenin in the human epithelial cells was attenuated, suggesting the involvement of EGR-1 in the anti-tumoric activity of apigenin. To link the EGR-1 induction to EGR-1-regulated gene products in colon cancer, NSAID-Activated Gene 1 (NAG-1) was demonstrated to be elevated by apigenin and isovitexin at 24-48 hr after treatment. Taken together, apigenin-activated ERK1/2 mediated EGR-1 gene induction, which was associated with suppression of the cellular viability by apigenin compound.

Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-Mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress

  • Hyun Hwangbo;Cheol Park;EunJin Bang;Hyuk Soon Kim;Sung-Jin Bae;Eunjeong Kim;Youngmi Jung;Sun-Hee Leem;Young Rok Seo;Su Hyun Hong;Gi-Young Kim;Jin Won Hyun;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.349-360
    • /
    • 2024
  • Oxidative stress contributes to the onset of chronic diseases in various organs, including muscles. Morroniside, a type of iridoid glycoside contained in Cornus officinalis, is reported to have advantages as a natural compound that prevents various diseases. However, the question of whether this phytochemical exerts any inhibitory effect against oxidative stress in muscle cells has not been well reported. Therefore, the current study aimed to evaluate whether morroniside can protect against oxidative damage induced by hydrogen peroxide (H2O2) in murine C2C12 myoblasts. Our results demonstrate that morroniside pretreatment was able to inhibit cytotoxicity while suppressing H2O2-induced DNA damage and apoptosis. Morroniside also significantly improved the antioxidant capacity in H2O2-challenged C2C12 cells by blocking the production of cellular reactive oxygen species and mitochondrial superoxide and increasing glutathione production. In addition, H2O2-induced mitochondrial damage and endoplasmic reticulum (ER) stress were effectively attenuated by morroniside pretreatment, inhibiting cytoplasmic leakage of cytochrome c and expression of ER stress-related proteins. Furthermore, morroniside neutralized H2O2-mediated calcium (Ca2+) overload in mitochondria and mitigated the expression of calpains, cytosolic Ca2+-dependent proteases. Collectively, these findings demonstrate that morroniside protected against mitochondrial impairment and Ca2+-mediated ER stress by minimizing oxidative stress, thereby inhibiting H2O2-induced cytotoxicity in C2C12 myoblasts.

Antioxidant activity and comparative analysis of major functional compounds in liqueur using coffee and coffee-ground (커피와 커피박 침출주의 항산화 활성 및 주요 생리활성 물질의 비교 분석)

  • Kang, Jeong Eun;Park, Seon Kyeong;Guo, Tian Jiao;Kang, Jin Yong;Lee, Du Sang;Kim, Jong Min;Kwon, O-Jun;Lee, Uk;Heo, Ho Jin
    • Food Science and Preservation
    • /
    • v.23 no.4
    • /
    • pp.560-567
    • /
    • 2016
  • Sensory evaluation, in vitro antioxidant activities and main compounds of coffee water-extract, coffee liqueur (CL) and coffee-ground liqueur (CGL) were investigated to consider their industrialization. Sensory evaluation showed that all groups of CGL without 25% CGL (3 month) were relatively higher than CL groups. Total phenolic compounds and in vitro antioxidant activities such as 1,1-diphenyl-2picryl-hydrazyl (DPPH) radical scavenging activity and ferric reducing/antioxidant power (FRAP) were also performed. The group of 35% CGL had higher total phenolic compounds than others, and the result of DPPH radical scavenging activity was similar to that of total phenolic compounds. In addition, 35% CGL is comparable to the FRAP of coffee water extract (CE). Qualitative and quantitative analysis using high-performance liquid chromatography (HPLC) were performed, and chlorogenic acid as a ployphenolic compound and caffeine as a nonpolyphenolic compound were detected in all samples. Moreover, the HPLC analysis showed that CGLs contain a larger amounts of chlorogenic acid (difference of 0.3~10.5%) and also greater amounts of caffeine (difference of 10.0~18.2%) more then CE. Consequently, these results suggest that coffee-ground as coffee by-products could be used as commercially available food substances because of its physiological molecules remained.

Comparison of composition and antioxidant activity of Poria cocos Wolf cultivated in a mortuary and cemetery (시설 및 토경재배 복령의 시기별 성분 및 항산화 활성)

  • Kim, Jin-Yoon;Lee, Hwa-Yong;Jo, Woo-Sik;Park, Seung-Chun
    • Journal of Mushroom
    • /
    • v.16 no.2
    • /
    • pp.111-117
    • /
    • 2018
  • This study was conducted to compare the composition and antioxidant activity of 1- and 2-year-old Poria cocos Wolf cultivated at a mortuary and cemetery. An elemental analyzer test showed oxygen, carbon, hydrogen, nitrogen, and sulfur to be present at concentrations of 45~46%, 39~41%, 6.06~6.1%, 0.21~0.22%, and 0%, respectively. No differences in composition were observed among samples. Eleven minerals (S, Ca, Mg, P, As, Se, Cu, Fe, Pb, Zn, and Cd) found in P. cocos cultivated at the mortuary and cemetery were analyzed by inductively coupled plasma mass spectrometry (ICP). The levels of S, Fe, Mg, and Zn in P. cocos were higher in cemetery-cultivated samples than in mortuary-cultivated samples. A 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay for antioxidant activity revealed half-maximal inhibitory concentration ($IC_{50}$)values of P. cocos to be 8.601 mg/mL (mortuary, 1 year old), 12.85 mg/mL (cemetery, 1 year old), 1.23 mg/mL (mortuary, 2 years old), and 1.18 mg/mL (landfill, 1 year old). A 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay revealed $IC_{50}$ values of 15.85 mg/mL (mortuary, 1 year old),14.59 mg/mL(cemetery, 1 year old), 3.9 mg/mL (mortuary, 2 years old), and 14.92 mg/mL (cemetery, 1 year old). The results showed a concentration-dependent effect. Two-year-old mortuary-cultivated P. cocos had the highest antioxidant activity among samples. Ultrastructure analysis with a field emission scanning electron microscope (FE-SEM) showed no obvious differences among samples.