• 제목/요약/키워드: phytate(inositol hexaphosphate)

검색결과 8건 처리시간 0.016초

A NOTE ON THE REMOVAL OF PHYTATE IN SOYBEAN MEAL USING Aspergillus usami

  • Ilyas, A.;Hirabayasi, M.;Matsui, T.;Yano, H.;Yano, F.;Kikishima, T.;Takebe, M.;Hayakawa, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제8권2호
    • /
    • pp.135-138
    • /
    • 1995
  • Soybean meal was fermented by Aspergillus usami in order to reduce phytate content. Aflatoxin B1 was not detected in the fermented soybean meal. The contents of crude protein, crude fiber, ether extract and crude ash were slightly increased following fermentation with a concomitant reduction in nitrogen free extract. Though the fermentation partly degraded proteins in the soybean meal, there was small difference in amino acid composition between the soybean meal and the fermented soybean meal. The results showed that the fermentation did not affect nutritional value of protein in soybean meal. Approximately 55% of phosphorus extracted by trichloroacetic acid was inositol hexaphosphate (phytate) in the soybean meal. The content of inositol tetra to hexaphosphates was not detected in the fermented soybean meal. These results indicated that the fermentation almost completely eliminated phytate in soybean meal. Phytase activity was not detected in the unfermented soybean meal. However, the enzyme activity in the fermented soybean meal was 167.7 U/g. When the fermented soybean meal in supplemented in formula feeds, phytase in the fermented soybean meal might partly degrade the phytate in other ingredients in the digestive tract. The fermented soybean meal is possibly used as a phytate-free protein source of feed, which contains high available phosphorus.

Phytic Acid와 Phytase에 관한 동물산업적 고찰 (An Animal-Industrial Review on Phytic Acid and Phytase)

  • 양시용;김창원;강창원
    • 한국축산시설환경학회지
    • /
    • 제7권2호
    • /
    • pp.83-102
    • /
    • 2001
  • Phytic acid (myo-inositol hexaphosphate or IP6) is the major storage form of phosphorus in cereals and legumes, representing 18 to 88% of the total phosphorus. Phytate form of phosphorus is not readily utilized by monogastric animals and this result causes pollution problem by phosporus released in areas of intensive livestock production. The interaction between phytic acid and essential dietary minerals, protein, or vitamins is considered to be one of the primary factors limiting the nutritional values of cereals and legunes in monogastric animals. Attempts have been made to hydrolyze dietary phytic acid by phytases to improve the feed quality and to decrease the amount of phosphorus excreted by animals. Phytase(myo-inositol hexakisphosphate phosphohydrolase) hydrolyzes phytic acid to myo-inositol and phosphoric acid. Two types of phytases are known: 3-phytase (EC 3.1.3.8) and 6-phytase (EC 3.1.3.26), indicating the intial attack to the susceptable phosphoester bond. Because of its great industrial importance, there is ongoing interest in isolating new bacterial strains producing novel and efficient phytases.

  • PDF

하천환경에서의 phytsae 활성변화에 관한 연구 (A Study on the Variation of Phytase Activity in the River Environment)

  • 김영진;오남순;정문호
    • 한국환경보건학회지
    • /
    • 제27권4호
    • /
    • pp.1-8
    • /
    • 2001
  • From August 2000 to August 2001, 9 variables of physicochemical factors and phytase activity were investigated at 4 sites in the River Yungpyung and the influences of Physicochemical factors to Phytase activity were analyzed. Phytase activities of Site 1, Site 2, Site 3, and Site 4 varied between N.D ∼566 nmol/ ι /hr, N.D \" 434 nmol/ ι /hr, N.D ∼557 nmol/ ι /hr, and N.D ∼723 nmol/ ι /hr, respectively. The activities of summer season were higher than those of other season. But the activities were not detected on the winter season. The phytase activity and temperature showed high correlation. The correlation coefficients of Site 1, Site 2, Site 3, and Site 4 were 0.82(p<0.01).0.92(p<0.01),0.87(p<0.01), and 0.88(p<0.01), respectively. The phytase activity and NOI₃/sup -/ ion showed negative relation(r=-0.59, p<0.05) at Site 1. And the phytase activity had relation with Zn/sup 2+/at Site 2(r=().57, p<0.05) and Site 3(r=0.7E, p<7.07).

  • PDF

식육에서 피틴산염과 인산염의 Escherichia coli O157:H7균에 대한 항균효과 (Antibacterial Activity of Sodium Phytate and Sodium Phosphates Against Escherichia coli O157:H7 in Meats)

  • 허진주;리란;이예은;이기남;남상윤;윤영원;정재황;이상화;유한상;이범준
    • 한국식품위생안전성학회지
    • /
    • 제22권1호
    • /
    • pp.37-44
    • /
    • 2007
  • 피틴산(Phytic acid)dms inositol hexaphosphate로서 식물성 식품 및 씨 중에 1-5%가량 존재하는 자연 항산화 물질로서 소화효소에 의해 쉽게 분해되지 않는다. 한편 인산염은 식육에서 품질개량제로 식육에서의 항균 효과에 대해서는 이미 여러 보고가 있으나 그 결과는 다양하다. 일반적으로 생육에서는 그 효능이 낮은데 이것은 생육에 존재하는 phosphatase의 작용에 의해 인산염들이 가수분해되기 때문이다. 한편 피틴산염은 열에 강하고 쉽게 분해되지 않으므로 생육이나 멸균 처리된 식육에서 공히 인산염들이 가지고 있는 항균효과를 기대할 수 있다. 본 실험에서는 선택배지에서 E. coli O157:H7에 대한 sodium phytate(STP), sodium pyrophosphate(SPP) 및 sodium tripolyphosphate(STPP)의 항균효과를 평가하였고,더불어 생육 및 가열 처리된 식육모델에서 E. coli O157:H7 접종 후에 항균 효과를 비교 평가하였다. 선택된 배지인 tryptic soy broth에서 E. coli O157:H7에 대한 항균 효과는 SPT, SPP 및 STPP의 0.05, 0.1, 0.5%의 세 가지 농도에서 농도에 의존적으로 유의성 있게 세균 증식을 억제시켰으며, 항균효과는 SPP에서 가장 강하게 나타났다. 생육인 닭고기, 돼지고기 및 소고기에 SPT, SPP 및 STPP를 각각 0.05, 0.1, 0.3 그리고 0.5%의 농도별로 첨가했을 때 E. coli O157:H7의 증식이 모두 유의성 있게 감소하였다 (p<0.05). 또한 가열 처리한 식육에서도 이러한 항균효과가 유의적으로 관찰되었으며(p<0.05), SPT는 SPP나 STPP보다 더 강한 항균효과를 보였다. 이러한 항균효과들은 가열처리된 식육보다 생육에서 더욱 강하게 나타났다. SPT, SPP 및 STPP의 첨가는 식육에서 pH를 증가시켰으며, STP의 첨가는 식육에서 soluble orthophosphate 유리에 영향을 주지 않았으나, SPP 및 STPP의 첨가는 식육에서 soluble orthophosphate의 유리를 증가시켰다. 이러한 결과로부터 피틴산염은 이미 알려진 인산염들보다 미약하나마 항균효과가 뛰어나며 더불어 축산식품의 첨가제로서 사용시 식품의 기능성 향상과 더불어 매우 유용하게 사용될 수 있을 것이다.

식육에서 피틴산염의 Salmonella typhimurium균에 대한 항균효과 (Antibacterial Activity of Sodium Phytate Against Salmonella typhimurium in Meats)

  • 백동진;허진주;이예은;이기남;남상윤;윤영원;정재황;이상화;이범준
    • 한국식품위생안전성학회지
    • /
    • 제22권4호
    • /
    • pp.382-387
    • /
    • 2007
  • 피틴산(phytic acid)은 inositol hexaphosphate로서 식물성식품 및 씨 중에 1-5%가량 존재하는 자연 항산화 물질로서 소화효소에 의해 쉽게 분해되지 않는다. 한편 인산염은 식육에서 품질개량제로 식육에서의 항균 효과에 대해서는 이미 여러 보고가 있으나 그 결과는 다양하다. 일반적으로 생육에서는 그 효능이 낮은데 이것은 생육에 존재하는 phosphatase의 작용에 의해 인산염들이 가수분해되기 때문이다. 한편 피틴산염은 열에 강하고 쉽게 분해되지 않으므로 생육이나 멸균 처리된 식육에서 공히 인산염들이 가지고 있는 항균효과를 기대할 수 있다. 본 실험에서는 pH가 다른 선택배지에서 Salmonella typhimurium에 대한 피틴산의 항균효과를 평가하였고, 더불어 생육에서 Salmonella typhimurium의 접종 후에 항균 효과를 평가하였다. 선택된 배지인 tryptic soy broth에서 Salmonella typhimurium에 대한 항균 효과는 0.1, 0.5 및 1%의 세 가지 농도에서 농도에 의존적으로 유의성 있게 나타났다. 생육인 닭고기, 돼지고기 및 소고기에 피틴산염을 각각 0.1, 0.5, 그리고 1%의 농도별로 첨가했을 때 Salmonella typhimurium의 증식이 모두 유의성 있게 감소하였다(p<0.01). 또한 피틴산염의 첨가는 모든 식육에서 pH를 0.5-0.6단위만큼 증가시켰다. 이러한 결과로부터 피틴산염은 배지 및 식육에서 항균효과가 뛰어나며 따라서 축산식품의 첨가제로서 사용시 식품의 기능성 향상과 더불어 매우 유용하게 사용될 수 있을 것이다.

Effects of Adding Super Dose Phytase to the Phosphorus-deficient Diets of Young Pigs on Growth Performance, Bone Quality, Minerals and Amino Acids Digestibilities

  • Zeng, Z.K.;Wang, D.;Piao, X.S.;Li, P.F.;Zhang, H.Y.;Shi, C.X.;Yu, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권2호
    • /
    • pp.237-246
    • /
    • 2014
  • Two experiments were conducted to evaluate the efficacy of feeding an Escherichia coli (E. coli) derived phytase to pigs fed P deficient, corn-soybean meal diets. In Exp. 1, one hundred and twenty crossbred piglets ($9.53{\pm}0.84$ kg) were allocated to one of five treatments which consisted of four low P diets (0.61% Ca, 0.46% total P and 0.24% non-phytate P) supplemented with 0, 500, 1,000, or 20,000 FTU/kg E. coli phytase as well as a positive control formulated to be adequate in all nutrients (0.77% Ca, 0.62% total P and 0.42% non-phytate P). The treatments were applied to six pens with four pigs per pen for 28 days. In Exp. 2, ten crossbred pigs ($19.66{\pm}1.16$ kg) fitted with ileal T-cannula were used in a nutrient balance study. The pigs were assigned to treatments similar to those used in Exp. 1 in a doubly replicated $5{\pm}4$ incomplete Latin square design (5 diets with 4 periods). Each period consisted of a 5-d adjustment period followed by a 3-d total collection of feces and urine and then a 2-d collection of ileal digesta. Supplementation with phytase linearly increased (p<0.05) weight gain, feed intake, feed efficiency, bone breaking strength and fat-free dry and ash bone weight. There were linear increases (p<0.01) in the apparent ileal digestibility (AID) of DM, GE, CP, Ca, total P, inositol hexaphosphate ($IP_6$) and some AA with increasing dose of E. coli phytase. Pigs fed 20,000 FTU/kg had a greater (p<0.05) AID of IP6 (80% vs 59% or 64%, respectively) than pigs fed diets with 500 or 1,000 FTU/kg phytase. There were linear increases (p<0.05) in the total tract digestibility of Ca, total P, Na, K, Mg, and Zn as well as in the retention of Mg and Zn with increased phytase dose. The retention and utilization of Cu, and the total tract digestibility of CP and Cu quadratic increased (p<0.05) with increased phytase dose. In conclusion, supplementation of 500 FTU of phytase/kg and above effectively hydrolyzed phytate in low-P corn-soybean diets for pigs. In addition, a super dose of phytase (20,000 FTU/kg) hydrolyzed most of the IP6 and consequently further improved mineral use, protein utilization and performance.

Antibacterial activity of sodium phytate, sodium pyrophosphate, and sodium tripolyphosphate against Salmonella typhimurium in meats

  • Hue, Jin-Joo;Baek, Dong-Jin;Lee, Yea Eun;Lee, Ki Nam;Nam, Sang Yoon;Yun, Young Won;Jeong, Jae-Hwang;Lee, Sang-Hwa;Yoo, Han Sang;Lee, Beom Jun
    • 대한수의학회지
    • /
    • 제47권4호
    • /
    • pp.449-456
    • /
    • 2007
  • The approval of use of certain food-grade phosphates as food additives in a wide variety of meat products greatly stimulated research on the applications of phosphates in foods. Although phosphates have never been classified as antimicrobial agents, a number of investigators have reported that phosphates have antimicrobial activities. Phytic acid is a natural plant inositol hexaphosphate constituting 1-5% of most cereals, nuts, legumes, oil seeds, pollen, and spores. In this study, we investigated antibacterial activities of sodium phytate (SPT), sodium pyrophosphate (SPP), sodium tripolyphosphate (STPP) on Salmonella typhimurium in tryptic soy broth and in row meat media including chicken, pork and beef. SPY, SPP and STPP at the concentrations of 0.5 and 1% dose-dependently inhibited the growth of S. typhimurium in tryptic soy broth at various pHs. The antibacterial activities of SPT and STPP were the stronger than that of SPP. In chicken, pork, and beef, SPT, SPP and STPP at the concentrations of 0.1, 0.5 and 1.0% significantly inhibited the bacterial growth in a dose-dependant manner (p < 0.05). The antibacterial activities of SPT, SPP, and STPP were more effective in chicken than beef. SPT and STPP at the concentration of 1% reduced the bacterial count by about 2 log units. The addition of SPT, SPP and STPP at the concentration of 0.5% in meats increased the meat pHs by 0.28-0.48 units in chicken, pork, and beef. These results suggest that SPT and STPP were equally effective for the inhibition of bacterial growth both in TSB and meat media and that SPT can be used as an animal food additive for increasing shelf-life and functions of meats.