• Title/Summary/Keyword: physiology effects

Search Result 3,662, Processing Time 0.024 seconds

A Study of Endothelium-dependent Pulmonary Arterial Relaxation and the Role of Nitric oxide on Acute Hypoxic Pulmonary Vasoconstriction in Rats (흰쥐 폐동맥의 내피세포의존성 혈관이완과 급성 저산소성 폐동맥수축에서 산화질소의 역할)

  • In, Kwang-Ho;Lee, Jin-Goo;Cho, Jae-Youn;Shim, Jae-Jung;Kang, Kyung-Ho;Yoo, Se-Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.3
    • /
    • pp.231-238
    • /
    • 1994
  • Backgroud: Since the demonstration of the fact that vascular relaxation by acetylcholine(Ach) results from the release of relaxing factor from the endothelium, the identity and physiology of this endothelium-derived relaxing factor(EDRF) has been the target for many researches. EDRF has been identified as nitric oxide(NO). With the recent evidences that EDRF is an important mediator of vascular tone, there have been increasing interests in defining the role of the EDRF as a potential mediator of hypoxic pulmonary vasoconstriction. But the role of EDRF in modulating the pulmonary circulation is not compeletely clarified. To investigate the endothelium-dependent pulmonary vasodilation and the role of EDRF during hypoxic pulmonary vasoconstriction, we studied the effects of $N^G$-monomethyl-L-arginine(L-NMMA) and L-arginine on the precontracted pulmonary arterial rings of the rat in normoxia and hypoxia. Mothods: The pulmonary arteries of male Sprague Dawley(300~350g) were dissected free of surrounding tissue, and cut into rings. Rings were mounted over fine rigid wires, in organ chambers filled with 20ml of Krebs solution bubbled with 95 percent oxygen and 5 percent carbon dioxide and maintained at $37^{\circ}C$. Changes in isometric tension were recorded with a force transducer(FT.03 Grass, Quincy, USA) Results: 1) Precontraction of rat pulmonry artery with intact endothelium by phenylephrine(PE, $10^{-6}M$) was relaxed completely by acetylcholine(Ach, $10^{-9}-10^{-5}M$) and sodium nitroprusside(SN, $10^{-9}-10^{-5}M$), but relaxing response by Ach in rat pulmonary artery with denuded endothelium was significantly decreased. 2) L-NMMA($10^{-4}M$) pretreatment inhibited Ach($10^{-9}-10^{-5}M$)-induced relaxation, but L-NMMA ($10^{-4}M$) had no effect on relaxation induced by SN($10^{-9}-10^{-5}M$). 3) Pretreatment of the L-arginine($10^{-4}M$) significantly reversed the inhibition of the Ach ($10^{-9}-10^{-5}M$)-induced relaxation caused by L-NMMA($10^{-4}M$) 4) Pulmonary arterial contraction by PE($10^{-6}M$) was stronger in hypoxia than normoxia but relaxing response by Ach($10^{-9}-10^{-5}M$) was decreased, 5) With pretreatment of L-arginine($10^{-4}M$), pulmonary arterial relaxation by Ach($10^{-9}-10^{-5}M$) in hypoxia was reversed to the level of relaxation in normoxia. Conclusion: It is concluded that rat pulmonary arterial relaxation by Ach is dependent on the intact endothelium and is largely mediated by NO. Acute hypoxic pulmonary vasoconstriction is related to the suppression on NO formation in the vascular endothelium.

  • PDF

Evaluation of Parameters of Gas Exchange During Partial Liquid Ventilation in Normal Rabbit Lung (토끼의 정상 폐 모델에서 부분액체환기 시 가스교환에 영향을 주는 인자들에 대한 연구)

  • An, Chang-Hyeok;Koh, Young-Min;Park, Chong-Wung;Suh, Gee-Young;Koh, Won-Jung;Lim, Sung-Yong;Kim, Cheol-Hong;Ahn, Young-Mee;Chung, Man-Pyo;Kim, Ho-Joong;Kwon, O-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.1
    • /
    • pp.14-23
    • /
    • 2002
  • Background: The opitmal ventilator setting during partial liquid ventilation(PLV) is controversial. This study investigated the effects of various gas exchange parameters during PLV in normal rabbit lungs in order to aid in the development of an optimal ventilator setting during PLV. Methods: Seven New-Zealand white rabbits were ventilated in pressure-controlled mode with the following settings; tidal volume($V_T$) 8 mL/kg, positive end-expiratory pressure(PEEP) 4 $cmH_2O$, inspiratory-to-expiratory ratio(I:E ratio) 1:2, fraction of inspired oxygen($F_TO_2$) 1.0. The respiration rate(RR) was adjusted to keep $PaCO_2$ between 35~45 mmHg. The ventilator settings were changed every 30 min in the following sequence : (1) Baseline, as the basal ventilator setting, (2) Inverse ratio, I:E ratio 2:1, (3) high PEEP, adjust PEEP to achieve the same mean inspiratory pressure (MIP) as in the inverse ratio, (4) High $V_T$, $V_T$ 15 mL/kg, (5) high RR, the same minute ventilation (MV) as in the High $V_T$. Subsequently, the same protocol was repeated after instilling 18 mL/kg of perfluorodecalin for PLV. The parameters of gas exchange, lung mechanics, and hemodynamics were examined. Results: (1) The gas ventilation(GV) group showed no significant changes in the $PaO_2$ at all phases. The $PaCO_2$ was lower and the pH was higher at the high $V_T$ and high RR phases(p<0.05). No significant changes in the lung mechanics and hemodynamics parameters were observed. (2) The baseline $PaO_2$ for the PLV was $312{\pm}$ mmHg. This was significantly lower when decreased compared to the baseline $PaO_2$ for GV which was $504{\pm}81$ mmHg(p=0.001). During PLV, the $PaO_2$, was significantly higher at the high PEEP($452{\pm}38$ mmHg) and high $V_T$ ($461{\pm}53$ mmHg) phases compared with the baseline phase. However, it did not change significantly during the inverse I:E ratio or the high RR phases. (3) The $PaCO_2$ was significantly lower at high $V_T$ and RR phases for both the GV and PLV. During the PLV, $PaCO_2$ were significantly higher compared to the GV (p<0.05). (4) There were no important or significant changes in of baseline and high RR phases lung mechanics and hemodynamics parameters during the PLV. Conclusion: During PLV in the normal lung, adequate $V_T$ and PEEP are important for optimal oxygenation.