• 제목/요약/키워드: physiologically based pharmacokinetic (PBPK) models

검색결과 12건 처리시간 0.018초

Physiologically-based pharmacokinetic predictions of intestinal BCRP-mediated drug interactions of rosuvastatin in Koreans

  • Bae, Soo Hyeon;Park, Wan-Su;Han, Seunghoon;Park, Gab-jin;Lee, Jongtae;Hong, Taegon;Jeon, Sangil;Yim, Dong-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권3호
    • /
    • pp.321-329
    • /
    • 2018
  • It was recently reported that the $C_{max}$ and AUC of rosuvastatin increases when it is coadministered with telmisartan and cyclosporine. Rosuvastatin is known to be a substrate of OATP1B1, OATP1B3, NTCP, and BCRP transporters. The aim of this study was to explore the mechanism of the interactions between rosuvastatin and two perpetrators, telmisartan and cyclosporine. Published (cyclosporine) or newly developed (telmisartan) PBPK models were used to this end. The rosuvastatin model in Simcyp (version 15)'s drug library was modified to reflect racial differences in rosuvastatin exposure. In the telmisartan-rosuvastatin case, simulated rosuvastatin $C_{maxI}/C_{max}$ and $AUC_I/AUC$ (with/without telmisartan) ratios were 1.92 and 1.14, respectively, and the $T_{max}$ changed from 3.35 h to 1.40 h with coadministration of telmisartan, which were consistent with the aforementioned report ($C_{maxI}/C_{max}$: 2.01, $AUC_I/AUC$:1.18, $T_{max}:5h{\rightarrow}0.75h$). In the next case of cyclosporine-rosuvastatin, the simulated rosuvastatin $C_{maxI}/C_{max}$ and $AUC_I/AUC$ (with/without cyclosporine) ratios were 3.29 and 1.30, respectively. The decrease in the $CL_{int,BCRP,intestine}$ of rosuvastatin by telmisartan and cyclosporine in the PBPK model was pivotal to reproducing this finding in Simcyp. Our PBPK model demonstrated that the major causes of increase in rosuvastatin exposure are mediated by intestinal BCRP (rosuvastatin-telmisartan interaction) or by both of BCRP and OATP1B1/3 (rosuvastatin-cyclosporine interaction).

혼합물에서 화학물질간의 상호작용 효과 (Interaction effect of Chemical Mixtures)

  • 임종환;신주연;김용규
    • 대한임상독성학회지
    • /
    • 제3권1호
    • /
    • pp.11-16
    • /
    • 2005
  • Chemical mixtures of components, each of which are present at less than guidance concentrations, may be hazardous due to additivity, interactions, or both. Toxicological interactions may increase the health hazard above what would be expected from an assessment of each component singly, or all components additively. So chemical mixture are a particular issue in public health. There are several approach to assess whether there are additivity or interaction in assessing toxicological effects, such as, components-based approach, physiologically-based pharmacokinetic /pharmacodynamic(PBPK/PD) models, hazard index method, and weight-of evidence method. If we consider interaction or additivity effects in assessing the health effects of chemcial mixtures, we can get more accurate information about toxicological effects and dose-response relationship in chemical mixtures.

  • PDF