• Title/Summary/Keyword: physiological dormancy

Search Result 58, Processing Time 0.028 seconds

Effects of Some Environmental Factors on the Germination of Seeds in Ambrosia artemisiifolia var. elatior (몇가지 환경요인이 돼지풀의 종자발아에 미치는 영향)

  • Cha, Seung-Hee;Kim, Won-Hee;Kim, Jong-Hong
    • The Korean Journal of Ecology
    • /
    • v.25 no.3 s.107
    • /
    • pp.163-170
    • /
    • 2002
  • In order to analyze the life cycle of A. artemisiifolia var. elatior dormancy and some environmental factors inducing germination of the seeds were examined. The results were as follows : Dormancy of fertile seeds was broken in part within a month after seed collection in case of adequate moisture and alternating temperature was also effective in breaking dormancy. The temperature range, which allow germination was $12^{\circ}C{\sim}32^{\circ}C$. Optimum temperature for germination was $24^{\circ}C$. The seed of A. artemisiifolia var. elatior was light-independent. The difference of storage period appeared to have no particular effect on the viability of seeds at any time during the 9-month storage period. In the increasing temperature(IT) regime, A. artemisiifolia var. elatior seeds started to germinate at $16^{\circ}C$, showing the higher temperature the greater germination rate : the final germination percentage was 99.34%. On the other hand, in the decresing temperature(DT) regime, seeds began to germinate at $20^{\circ}C$ with the 1.34% germination. An induced dormancy occurred at $12^{\circ}C$ making the 5.34% final germination in the DT regime. Low temperature was more effective to break dormancy than higher temperature. Seeds of A. artemisiifolia var. elatior seems to be germinated in mid to late autumn or germination delayed until following spring. The above results suggest these variation of germination response in diverse environmental factors seems to be a physiological strategy to maintain their existence and to reproduce in the extreme thermal variation.

Physiological Response of Panax ginseng to Temperature I. Old experience, distribution, germination, photosynthesis and respiration (인삼의 온도에 대한 생리반응 . 옛경험, 분석, 발아, 광합성, 흡수)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.3 no.2
    • /
    • pp.156-167
    • /
    • 1979
  • Physiological characteristics of Panax ginseng were reviewed in relation to temperature. According to the old literatures and records of cultivator's experiences it was elucidated that ginseng plants require light but hate high temperature and that the cultural methods were developed to content two characteristics in contradiction. Low temperature (cool climate) during growing season seems (or ginseng to be essential and to escape from the extreme coldness according to air and soil temperature of natural habitat and cultivated area. Optimum temperature of dehiscence (15∼below 20$^{\circ}C$) is a little higher than that of germination (10∼15$^{\circ}C$). Optimum temperature for growing of new buds (18∼20$^{\circ}C$) is similar to that for growing after emergence (17∼21$^{\circ}C$). Dormancy of both matured embryo and new buds is broken at the same temperature (2∼3$^{\circ}C$). It seems reasonable that optimum temperature of photosynthesis (22$^{\circ}C$) is similar to that of growth. Respiration quotients of various organs or of whole plant ranged from 1.7 to 3 incrased with high temperature. Respiratory consumption and oxygen limitation seem to be potential factors to induce decay during dehiscence and germination of seeds and root rot in fields. Research on organ differentiation. photosynthesis, respiration and growth with age is needed for the development of cultivation methods.

  • PDF

Biochemical Changes during Embryonic Diapause in Domestic Silkworm, Bombyx mori L. (Lepidoptera: Bombycidae)

  • Singh, Tribhuwan;Saratchandra, Beera
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • Ecophysiologically diapause represents a syndrome of physiological and biochemical characteristics, all of which ensure survival during a long period of dormancy. Since, silkworm enters diapause as embryo at the early embryonic stage, the duration of egg life depends on the duration of embryonic diapause. The nature of diapause in silkworm, Bombyx mori, is primarily determined by genetic characters and endocrinologicnl mechanisms, mediated by environmental factors such as temperature and photoperiod. Hibernating potency value besides nucleic acid and carbohydrate metabolism, production and utilization of sorbitol are also equally responsible for induction, initiation, determination, maintenance and termination of diapause. Embryonic diapause in Bombyx moir, induced by active secretion of sub-oesophageal ganglion is attributed to hormonal system and metabolic adjustment, which serves to bring about a new physiological state. Metabolic conversion of trehalose to glycogen at induction, glycogen to sorbitol at initiation and sorbitol to glycogen at termination of diapause is correlated and in each metabolic shift a key enzyme becomes active in response to hormonal and environmental stimulation. An attempt has been made in this review article to discuss briefly the nature of embryonic diapause, influence of various factors on diapause nature, hormonal mechanism of diapause besides biochemical composition of egg, nucleic acid and carbohydrate metabolism, production and utilization of sorbitol in relation to induction, determination, maintenance, initiation and termination of diapause in the silkworm, Bombyx mori.

Acclimation responses of Tamarix chinensis seedlings related to cold stress

  • Joo, Young-Sung;Lee, Eun-Ju
    • Journal of Ecology and Environment
    • /
    • v.34 no.3
    • /
    • pp.251-257
    • /
    • 2011
  • The purpose of this study was to investigate the acclimation responses of Tamarix chinensis to cold stress. We evaluated the acclimation responses by measuring biomass, daily elongation rate, chlorophyll content, and total soluble carbohydrate content. The plant samples comprised leaves from seedlings of 2 different ages (8 and 12 weeks); the leaves were collected 0, 2, and 4 weeks after cold treatment. We found that the cold-treated samples showed reduced daily elongation rates and chlorophyll content. Further, these samples showed more than 8-fold increase in the total soluble carbohydrate content. However, the seedling ages did not have a significant influence on the growth of cold-treated seedlings. On the basis of these findings, we can conclude that T. chinensis seedlings aged less than 1 year old show acclimation to cold stress by accumulating soluble carbohydrates. This study may help us understand how T. chinensis seedlings acclimatize to their first cold season.

Optimum Storage Temperature for Spring Sowing of Panax ginseng Seeds (봄파종을 위한 인삼 종자 저장 적정 온도 연구)

  • Suh, Su Jeoung;Jang, In Bae;Jang, In Bok;Moon, Ji Won;Yu, Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.6
    • /
    • pp.390-396
    • /
    • 2019
  • Background: Usually ginseng seeds are sown during autumn and spring. Sowing in spring often results in poorer seedling establishment than in autumn. One of the reasons for poor germination could be cold-treatment condition for breakage of physiological dormancy during winter. Here we tested the effects of storage temperature used during cold treatment on germination. Methods and Results: Germination properties were observed after dehiscent seeds were stored as wet and dry at 2℃, -2℃, -3.5℃ and alternating temperature (AT). Seed dryness and storage temperature affected germination properties (p < 0.01). Wet and AT condition germinated highest, and wet and -3.5℃ condition germinated lowest, which was 91.2% and 1.4% respectively. Mean germination time (MGT) of the wet and AT condition was faster than other treatments at 2.4 days, and the dry and -2℃ condition was the longest. Germination performance index (GPI) was highest for wet and AT condition (37.7%) and the lowest for wet and -3.5℃ condition (0.5%). The growth of above-ground and below-ground were the best for wet and 2℃ condition, and wet seeds showed better growth than dry seeds (p < 0.01). Conclusions: For cold treatment, ginseng seeds may not be stored below -2℃ for successful germination during spring sowing.

Dehisced Seed Germination and Seedling Growth Affected by Chilling Period in Eleutherococcus senticosus Maxim. (가시오갈피 개갑종자의 저온처리에 의한 발아 묘목의 생육특성)

  • Li, Cheng Hao;Lim, Jung-Dae;Kim, Myong-Jo;Heo, Kwon;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.5
    • /
    • pp.347-351
    • /
    • 2003
  • This experiment was carried out to study the optimal chilling period for breaking the physiological dormancy of dehisced E. senticosus seeds and to investigate the critical seeding date in Kangwondo. Storage at $5^{\circ}C$ for 85 days was most effective in breaking dormancy of dehisced seeds, but didn't germinated synchronously. Only 28.1% of undehisced seeds germinated after 125 days of low temperature storage. For improving seedling survival rate in the field, 50% shading was more effective than 30% shading. Delayed seeding date resulted in decreased seedling fresh weight, dry weight, leaf area and root length, but seeding date has no significant affecte on stem length.

Dynamic Studies on Physiology and Biochemistry in American Ginseng Seed During Stratification Part III. POD Activity, Contents of DNA and RNA, Isozymes of POD and ES - (충적과정중 미국인삼 종자의 생리 및 생화하적 지표에 관한 동태학적 연구 III)

  • Huang, Yao-Ge;Li, Xiang-Gao;Kuang, Ya-Lan;Yan, Jie-Kun;Cui, Shu-Yu;Yu, Wen-Bo;Yang, Ji-Xiang;Liu, Ren-Song;Kim, Hack-Seang
    • Journal of Ginseng Research
    • /
    • v.21 no.1
    • /
    • pp.43-48
    • /
    • 1997
  • Dynamic parameters of biochemistry including the POD (peroxidase) activity, contents of DNA and RNA, isozymes of POD and ES (esterase) in American send (Panax quinquefolium L.) seed are reported in the present paper. The dynamic changes of POD activity proved that the PAS (physiological afterripening stage) is a stage in which some substances are prepared for seed germination. The POD activity correlated with ER (embryo ratio) significantly DNA content changed little only within 0.0036∼0.013 mg/ml, which did not correlate with ER. RNA content changed from 0.1539 to 1.0313 mg/ml and correlated significantly with RE during all of the embryo afterripening. None of the POD isozyme band was obtained in ESGS (embryo slowly growth stage), but five bands in ERGS (embryo rapidly growth stage) and six bands in PAS. Four bands of ES isozymes were obtained in ESGS, but six bands in ERGS, particularly, the content of ES isozymes increased in PAS. All of these may provide some information for understanding the dormancy mechanisms of American song seed.

  • PDF

Effect of Seed Dehydration and Temperature during Cold-Stratification on the Seed Quality of Panax ginseng C. A. Meyer (인삼 종자의 생리적 휴면타파기간 중 건조처리 및 저장온도가 종자 건전성에 미치는 영향)

  • Suh, Su Jeoung;Jang, In Bae;Yu, Jin;Jang, In Bok;Park, Hong Woo;Seo, Tae Cheol;Kweon, Ki Bum
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.209-216
    • /
    • 2017
  • Background: Dehisced ginseng seeds need to be stored at cold temperatures for around 3 months to break their physiological dormancy, and thus, to aid in gemination. In the presence of high moisture in such an environment, seed spoilage and pre-germination may lower seed quality and productivity. To improve seed quality during cold-stratification, the effects of seed dehydration and temperature were tested. Methods and Results: In early December, dehisced ginseng seeds were dehydrated at 4 different levels and stored at $2^{\circ}C$ $-2^{\circ}C$, and $-20^{\circ}C$ for 3 months. Germination was carried out on the filter papers moistened with distilled water; emergence of root, shoot, and seed spoilage were assessed. Seed viability was examined by the tetrazolium test. More than 90% of the seeds stored at $2^{\circ}C$ and $-2^{\circ}C$ without drying or endocarp dehydration germinated, but seeds that were dehydrated to have a moisture content (MC) below 31% showed poor germination and lost their viability. In addition, the seeds stored at $-20^{\circ}C$ failed to show effective germination. Conclusions: Seed storage after endocarp dehydration might help to improve seed quality and increase seedling's ability to stand during the spring-sowing of ginseng.

Phenotypic characterization of pre-harvest sprouting resistance mutants generated by the CRISPR/Cas9-geminiviral replicon system in rice

  • Jong Hee Kim;Jihyeon Yu;Jin Young Kim;Yong Jin Park;Sangsu Bae;Kwon Kyoo Kang;Yu Jin Jung
    • BMB Reports
    • /
    • v.57 no.2
    • /
    • pp.79-85
    • /
    • 2024
  • Pre-harvest sprouting is a critical phenomenon involving germination of seeds in the mother plant before harvest under relative humid conditions and reduced dormancy. In this paper, we generated HDR mutant lines with one region SNP (C/T) and an insertion of 6 bp (GGT/GGTGGCGGC) in OsERF1 genes for pre-harvest sprouting (PHS) resistance using CRISPR/Cas9 and a geminiviral replicon system. The incidence of HDR was 2.6% in transformed calli. T1 seeds were harvested from 12 HDR-induced calli and named ERF1-hdr line. Molecular stability, key agronomic properties, physiological properties, and biochemical properties of target genes in the ERF1-hdr line were investigated for three years. The ERF1-hdr line showed significantly enhanced seed dormancy and pre-harvest sprouting resistance. qRT-PCR analysis suggested that enhanced ABA signaling resulted in a stronger phenotype of PHS resistance. These results indicate that efficient HDR can be achieved through SNP/InDel replacement using a single and modular configuration applicable to different rice targets and other crops. This work demonstrates the potential to replace all genes with elite alleles within one generation and greatly expands our ability to improve agriculturally important traits.

A Study on the Germination of Apple Rootstock Seed, Malus sieboldii (사과 대목 종자의 발아에 관한 연구)

  • Cheong, Sam Taek;Kim, Ik Hong;Jeun, Sang Hang;Kim, Min
    • Current Research on Agriculture and Life Sciences
    • /
    • v.7
    • /
    • pp.41-46
    • /
    • 1989
  • The seeds of Malus sieboldii were collected in late fall of 1988 and stored in cold stratification condition for 15 weeks. Growth regulators such as $GA_3$, BA and ABA were treated to the seed to know germination capacity and seedling growth. The results were as follows. 1) Higher germination was achieved in $GA_3$ and BA plots, But ABA treatment showed lower germination percentage and physiological dwarf and also induced to the secondary dormancy condition in partly. 2) Average length of time for germination was delayed over 2 days in ABA plot when comparing with the other plots. 3) Average length of plumule and radicle also was inhibited by ABA treatment. This means lower seedling vigor. 4) Fresh and dry weight of the seeding were higher in BA plot while ABA plot was lower and undesirable seedling was produced. From above mentioned results, it is believed that ABA treatment to the seed induced the secondary dormancy and physiological dwarf pattern. Therefore, utilization of BA can be produced the normal seedling, the authors believed.

  • PDF