• Title/Summary/Keyword: physics concepts

Search Result 143, Processing Time 0.02 seconds

The Effect of 4M Learning Cycle Teaching Model based on the Integrated Mental Model Theory: Focusing on Learning Circular Motion of High School Students (통합적 정신모형 이론에 기반한 4M 순환학습 수업모형의 효과: 고등학생의 원운동 관련 기초 개념과 정신모형의 발달 측면에서)

  • Park, Ji-Yeon;Lee, Gyoung-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.4
    • /
    • pp.302-315
    • /
    • 2008
  • Circular motion has been one of the most difficult concepts for students to understand. To facilitate for students to form scientific mental models about circular motion, this study developed 4M learning cycle teaching model based on the integrated mental model theory and strategies. For this study, fifty-three eleventh graders at a technical high school in Inchon were taught for 3 class hours. We conducted tests of basic physics concept and mental model of circular motion before, after, and two months after instruction. In results, we found that there were statistically significant improvement in the test of basic physics concept and mental model related with circular motion after instruction. Especially, this teaching model affected learning effectiveness of Correctness and Coherence of mental model.

An Analysis of Conceptual Structure in the Subjects related to Matter of Elementary School Pre-service Teachers using SNA Method (의미네트워크를 활용한 초등학교 예비교사들의 물질 개념체계 분석)

  • Kim, Do Wook
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.1
    • /
    • pp.39-53
    • /
    • 2018
  • The purpose of this study was to investigate the conceptual structure of subjects related to matter having pre-service elementary school teachers by applying semantic network analysis (SNA). The analyzed concepts in the subjects of matter were 6 words such as 'atom', 'molecule', 'ion', 'electron', 'matter' and 'particle'. The results of SNA of the concepts are as follows : 1. In the semantic network of 'atom', words having a high betweenness centrality were linked with the words based on both the scientific context and the everyday context. 2. The network of 'molecule' was analyzed to be more organized than the network of the 'atom'. 3. In the network of 'ion', the group of words of the scientific context was distinguished from the group of words of the everyday context. 4. The network of 'electron' was analyzed to be more oriented on electricity and magnetism in the field of physics. 5. In the network of 'matter', the words related to compounds were linked with knowledge of history of science. 6. The network of 'particle' was not structured with words based on particulate nature of matter.

A development and evaluation of new training program for science teacher - focused on computer simulation inquiry experiments in physics - (새로운 과학 교육 프로그램의 개발과 평가 I - 컴퓨터 시뮬레이션을 이용한 물리 탐구 실험 연수를 중심으로 -)

  • Park, Jong-Won;Oh, Hee-Gyun;Kim, Doo-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.4
    • /
    • pp.653-664
    • /
    • 1999
  • This study was designed to develope an in-service training programme using Interactive $Physics^{TM}$ simulation for science teachers and to evaluate the effect of programme. The purposes of training programme are the improvement of scientific inquiry teaching ability as well as enhancement of the understanding of scientific concepts, inquiry skills, and the computer manipulation skills. The developed programme was implemented four times with 15 hours for each courses. The questionnaire for evaluating the programme after the last course showed that many teachers (1) voluntarily participated in this programme with internal motivation, (2) were satisfied with the level of programme difficulty, professionality of lecturer, and classroom environment, (3) gave positive responses about the achievement of the purposes of this programme, (4) showed strong intention for applying simulation to their school teaching. And future studies were proposed.

  • PDF

Impact of Direct Structured Instruction for Students with Learning Disabilities on Engineering Physics Concepts (공대 물리학 교육에서 학습장애자에 대한 직접교수법의 효과)

  • Hwang, Un-Hak
    • Journal of Practical Engineering Education
    • /
    • v.14 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • This study examined the impact of direct structured approach of students who demonstrate little or no sense of basic engineer concepts in physics courses. This direct structured instruction is one of the methodologies that focuses on explicit and systematic practices in which an instructor set clear learning outcomes and clarifies the direction of the instruction. 90 participants were randomly selected and tested on the areas of problem-solving skills, reasoning, working memory, and processing speed. 20% of the participants were found to be students with basic engineering disabilities. On the other hand, in the direct structured group, 51.7% and 58.0% of the sample group (90 students) showed a 6.3% increase from the mid-term to final examinations, respectively. The subgroups with 50% or lower grades were decreased from 26.7% to 24.5%. However, five students with the lowest grade of 20% were selected as students with learning disabilities in the study and the average scores of mid-term and final exams were increased by 8.6%, which was 17.9% and 26.5%, respectively at the end of the study. As a result, it showed that direct structured approach for students with learning disabilities in the engineer concepts was effective.

An Analysis on Conceptual Sequence and Representations of Eye Vision in Korean Science Textbooks and a Suggestion of Contents Construct Considering Conceptual Sequence in the Eye Vision (초 . 중등학교 과학 교과서에서의 시각(eye vision) 개념의 연계성과 표현 방식 분석 및 연계성을 고려한 시각 개념 구성의 한 가지 제안)

  • Kim, Young-Min
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.5
    • /
    • pp.456-464
    • /
    • 2007
  • The aims of this research are to analyze the representations and conceptual sequence of eye vision in Korean science textbooks and to suggest a contents construct about eye vision where the conceptual sequence is considered. Research method was literature review, and the literatures that were used for analysis were the 7th Korean science curriculum which was revised in 1997, and the science and physics textbooks developed based on the 7th Korean science curriculum. The research results are as follows: 1) Although the science curriculum seems to have no problem on sequence in the eye vision concepts, the science and physics textbooks based on the curriculum reveal problems on the sequence in the eye vision concepts; 2) Some Korean science textbooks explain retinal image formation according to the Alhazen's idea, except in inverse image; 3) Some Korean science textbooks explain about the reasons of near- and far-sightedness without consistency between the textbooks for 7th and 8th grade students; 4) A few Korean science textbooks give an inappropriate explanation about the principle of eye sight correction by eye glasses; 5) According to the analysis result, the concepts related to eye vision should be presented in the order of explanation about light refraction phenomena, image formation process by convex lens, structure of human eye and retinal image formation process, correction of eye sight using lens.

Elementary School Students' Psychological Proximity of Electricity and Magnetism Concepts (전기와 자기 개념간의 근접도에 대한 초등학생의 학년별 변화)

  • 권성기;이재호
    • Journal of Korean Elementary Science Education
    • /
    • v.23 no.3
    • /
    • pp.199-207
    • /
    • 2004
  • Elementary science curriculum is designed to be closely-related magnetism with electricity in a physics domain and this paper explored whether elementary school students have recognized of relationships between them and whether there are any trends in the degree of recognition by grades. The elementary students of 3rd to 6th grade (total 154 persons) in a school in a local city participated in the experiment. Two forms of questionnaire were administrated to each grades. In the first questionnaire about magnetism, students were asked to rank the physics terms as the degree of proximity into magnetism and to write briefly the reason. In the second questionnaire about electricity, students were asked to do the same routine. The closer to the central term in the diagram, the lower score were given and the terms were classified as closely related to magnetism, electricity and the rest. Calculated the response frequency and averaged by the ranked terms, it was examined that the scores of proximity in how students closely rated conception to magnetism and electricity. The result said that the upper grades students showed the degree of proximity with magnetism and electricity as closely. Therefore, the sequence of comprehension of magnetism and electricity concept, which was found in the elementary school curriculum, seems to be found in the elementary students' recognitions by grades.

  • PDF

Development and Implementation of the Analysis Frame for Measurement Activity in Undergraduate Physics Laboratory (대학생들의 물리실험에서 측정 활동 분석틀 개발 및 적용)

  • Shin, Kwang-Moon;Kang, Young-Chang;Lee, Sung-Muk;Lee, Jae-Bong
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.1
    • /
    • pp.115-127
    • /
    • 2011
  • Analysis frame for undergraduate physics laboratory reports in collecting, processing, and analyzing data was developed. Using the frame and questionaries, we analyzed what difficulties students have in the concepts of error and uncertainty in writing laboratory reports. Students considered repetitive measurement for collecting data, but they didn't express it distinctly in their reports. They also had difficulties in measuring data around the extreme value or the large slope. Especially, most students have had difficulties with error and uncertainty. They can't apply the basic formulation to propagation of error and uncertainty. They also had the difficulties in analyzing data with concepts of error and uncertainty. While most students responded that error and uncertainty is important, there were few students who analyzed the influence of the cause of error on the results quantitatively. The result of the study showed that students have difficulties in writing the laboratory reports because they didn't have the correct concept of the error and uncertainty. So, it is needed to not only teach the physics concept about experiment but to teach basic concept of data collecting, processing, and analyzing specially about error and uncertainty for students as well.

The Effects of Instructors' Characteristics on the Concept Change of Korean High-School Students. (개념제시자의 특성이 고등학생의 물리 개념 변화에 미치는 영향)

  • Lim, Jung-Soo;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.16 no.4
    • /
    • pp.340-350
    • /
    • 1996
  • Knowledge is composed through the interaction between the concept structure already held by students and their experience, and learning can be said to be the active process of solving the cognitive conflict caused by this interaction. Therefore, this study consists in showing the effective learning method and finding out the elements which the teacher has to own, through examining several forms of pre-conception or mis-conception of the inertia, the force-equilibrium, the action and reaction, the heat, and the electric current, and then finding out their solution and studying student's change in science concepts. For this study, the types of concept on the five above-mentioned materials which students have were examined through the concept-classifying question paper, and the classes to which the class mode for the change of concepts applied, were practised in each different classroom by each different instructor - a professor, a scientist, a teacher, and two students, respectively. And the effect of the teaching strategy based on these classes, and each different instructor' influence on the change of concept in students. were examined. The result of my study is as follows; 1. Students have various types of pre-conception which are different from science concept, and these types of pre-conception tend to last even after learning in class. 2. The thoughts on the correct science concept of the high school third-grade students who learned the physics in the traditional teaching method, and the second grade students who don't learn the physics yet, were nearly equal those of the second grade students by receiving the physics class through the cognitive conflict course were greatly changed especially that students showed the distinct change on mechanics and electric current. 3. Students didn't show the remarkable change of the science concept on the five materials in the four kinds of experimental classes by each different instructor but in the part of mechanics, there was the distinct change between the class by professor and those by the students. This was due to the difference of the authority and the attitude of the concept demonstrator. 1) The authority, the kind attitude, and the responsibility of the expert played an important role in the correct concept-formation of mechanics part - especially in the case of the mis-conception caused by the intuitive belief. 2) In the class by instructor with the democratic teaching method, the change of concept took place more easily, because in his class students could discuss the subject freely, so that they might experience the thought course to give them the confidence on the science concept.

  • PDF

Developing 3D Simulation Contents for Understanding of Light and Shadow (빛과 그림자 개념 이해를 돕는 3차원 시뮬레이션 콘텐츠 개발 및 적용)

  • Lee, Ji Won;Yoon, Hayoung;Kim, Jung Bog
    • Journal of Science Education
    • /
    • v.38 no.3
    • /
    • pp.703-717
    • /
    • 2014
  • In physics, metal simulation is an important mechanism to understand and create concepts. If students have difficulty in mental simulation, understanding the concept of physics also gets difficult. By providing guide for spatial manipulation to students, 3D simulation contents can help them understand the concept of physics. In this study, the 3D simulation contents developed to help understanding the concept of light going straight and shadow is applied to 20 college students. The results, Hake gain is 0.93, showing high level of understanding about the class. In addition, through mental simulation, students predict the phenomenon well about the new context. This is shown that students' understanding of concept through 3D simulation contents are carried out well.

  • PDF

In situ Electric-Field-Dependent X-Ray Diffraction Experiments for Ferroelectric Ceramics (강유전 세라믹의 전기장 인가에 따른 in situ X-선 회절 실험)

  • Choi, Jin San;Kim, Tae Heon;Ahn, Chang Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.431-438
    • /
    • 2022
  • In functional materials, in situ experimental techniques as a function of external stimulus (e.g., electric field, magnetic field, light, etc.) or changes in ambient environments (e.g., temperature, humidity, pressure, etc.) are highly essential for analyzing how the physical properties of target materials are activated/evolved by the given stimulation. In particular, in situ electric-field-dependent X-ray diffraction (XRD) measurements have been extensively utilized for understanding the underlying mechanisms of the emerging electromechanical responses to external electric field in various ferroelectric, piezoelectric, and electrostrictive materials. This tutorial article briefly introduces basic principles/key concepts of in situ electric-field-dependent XRD analysis using a lab-scale XRD machine. We anticipate that the in situ XRD method provides a practical tool to systematically identify/monitor a structural modification of various electromechanical materials driven by applying an external electric field.