• Title/Summary/Keyword: physics

Search Result 14,377, Processing Time 0.072 seconds

Remote O2 plasma functionalization for integration of uniform high-k dielectrics on large area synthesized few-layer MoSe2

  • Jeong, Jaehun;Choi, Yoon Ho;Park, Dambi;Cho, Leo;Lim, Dong-Hyeok;An, Youngseo;Yi, Sum-Gyun;Kim, Hyoungsub;Yoo, Kyung-Hwa;Cho, Mann?Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.281.1-281.1
    • /
    • 2016
  • Transition metal dichalcogenides (TMDCs) are promising layered structure materials for next-generation nano electronic devices. Many investigation on the FET device using TMDCs channel material have been performed with some integrated approach. To use TMDCs for channel material of top-gate thin film transistor(TFT), the study on high-k dielectrics on TMDCs is necessary. However, uniform growth of atomic-layer-deposited high-k dielectric film on TMDCs is difficult, owing to the lack of dangling bonds and functional groups on TMDC's basal plane. We demonstrate the effect of remote oxygen plasma pretreatment of large area synthesized few-layer MoSe2 on the growth behavior of Al2O3, which were formed by atomic layer deposition (ALD) using tri-methylaluminum (TMA) metal precursors with water oxidant. We investigated uniformity of Al2O3 by Atomic force microscopy (AFM) and Scanning electron microscopy (SEM). Raman features of MoSe2 with remote plasma pretreatment time were obtained to confirm physical plasma damage. In addition, X-ray photoelectron spectroscopy (XPS) was measured to investigate the reaction between MoSe2 and oxygen atom after the remote O2 plasma pretreatment. Finally, we have uniform Al2O3 thin film on the MoSe2 by remote O2 plasma pretreatment before ALD. This study can provide interfacial engineering process to decrease the leakage current and to improve mobility of top-gate TFT much higher.

  • PDF

Physics Image Analysis by Sematic Method and Interest in Physics of Freshman Students in the Engineering College (의미 분석법에 의한 공과대학 신입생의 물리 이미지 및 관심 여부)

  • Song, Yongwook
    • Journal of Science Education
    • /
    • v.44 no.2
    • /
    • pp.214-224
    • /
    • 2020
  • Physics image and interest are factors that influence physics learning. Freshmen enter an engineering college under various learning conditions when they were in high school. Understanding physics image and interest according to characteristics of freshmen will help college physics education. The purpose of this study is to investigate the physics image and interest of freshmen in an engineering college according to their gender and physics course completion in high school and discuss the educational implications of college students on physics learning. The subjects of the study are 664 first grade students in engineering college. We analyzed physics image and interest of students according to gender and physics course completion in high school. Physics image is analyzed using semantic analysis. As a result of the analysis, the physics image is different according to the physics course completion. Interest in Physics depends on gender and physics course completion. Finally, we discuss the educational implications of college physics learning for engineering students.

Active control of amplitude and phase of high-power RF systems in EAST ICRF heating experiments

  • Guanghui Zhu;Lunan Liu;Yuzhou Mao;Xinjun Zhang;Yaoyao Guo;Lin Ai;Runhao Jiang;Chengming Qin;Wei Zhang;Hua Yang;Shuai Yuan;Lei Wang;Songqing Ju;Yongsheng Wang;Xuan Sun;Zhida Yang;Jinxin Wang;Yan Cheng;Hang Li;Jingting Luo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.595-602
    • /
    • 2023
  • The EAST ICRF system operating space has been extended in power and phase control with a low-level RF system for the new double-strap antenna. Then the multi-step power and periodic phase scanning experiment were conducted in L-mode plasma, respectively. In the power scanning experiment, the stored energy, radiation power, plasma impedance and the antenna's temperature all have positive responses during the short ramp-ups of PL;ICRF. The core ion temperature increased from 1 keV to 1.5 keV and the core heating area expanded from |Z| ≤ 5 cm to |Z| ≤ 10 cm during the injection of ICRF waves. In the phasing scanning experiment, in addition to the same conclusions as the previous relatively phasing scanning experiment, the superposition effect of the fluctuation of stored energy, radiation power and neutron yield caused by phasing change with dual antenna, resulting in the amplitude and phase shift, was also observed. The active control of RF output facilitates the precise control of plasma profiles and greatly benefits future experimental exploration.

In-Situ Observation of New Extra-Vascular Threadlike Structure of Mouse Using a Fluorescence Stereoscopic Microscope

  • Sung, Baeck-Kyoung;Lee, Ja-Woong;Lee, Byung-Cheon;Johng, Hyun-Min;Baik, Ku-Youn;Nam, Tae-Jeong;Park, Dae-Hun;Soh, Kyeong-Sun;Soh, Kwang-Sup
    • Journal of Pharmacopuncture
    • /
    • v.7 no.3
    • /
    • pp.73-76
    • /
    • 2004
  • We report the new threadlike structures outside the blood vessels of mice. For this, we developed an in-situ searching method of the structure by vital staining with the dye of acridine orange and using a fluorescent stereomicroscope designed specifically for this purpose. We consider that the newly found threadlike structure might be rediscovery of the extra-vascular Bonghan duct which was reported in 1963 by Bonghan Kim.

Interface between the Electroplated Copper-cobalt Thin Films and the Substrate

  • Kim, Jin-Gyu;Lee, Jung-ju;Bae, Jong-hak;Bang, Won-bae;Hong, Kim-in;Yoon, C. H.;Son, Derac;Jeong, Kee-ju
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.119-122
    • /
    • 2006
  • We electroplated copper-cobalt thin films on a silicon substrate, which had 150 nm thick copper seed layer. The adhesion between the two metallic layers could be increased by utilizing a proper organic additive, pulse plating technique, and high temperature annealing. The thin films exhibited columnar growth of the deposits and enhanced adhesion. This is attributed to the grain growth mechanism introduced by the additive and annealing.