• Title/Summary/Keyword: physicochemical parameters

Search Result 326, Processing Time 0.021 seconds

Temporal and Spatial Variations of Water Quality in the Cheonsu Bay of Yellow Sea, Korea (천수만 수질환경의 시·공간적 변동특성)

  • Park, Soung-Yun;Heo, Seung;Yu, Jun;Hwang, Un-Ki;Park, Jong-Su;Lee, Sung-Min;Kim, Chang-Mi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.439-458
    • /
    • 2013
  • Temporal and spatial variations of water quality were investigated in the Cheonsu Bay of Yellow Sea, Korea from 2010 to 2011. Water samples were collected at 16 stations and physicochemical parameters were analyzed including water temperature, salinity, suspended solids (SS), chemical oxygen demand (COD), dissolved oxygen (DO), Chlorophyll a and nutrients. Spatial distribution patterns of all survey items were not clear among stations but the bimonthly variations were distinct except the bottom water of the suspended solids. The trend analysis by principal component analysis (PCA) during 2 years revealed the significant variations in water quality in the study area. Spatial water qualities were discriminated into 3 clusters by PCA; station cluster in the surface water 1, 2~11, and 12~16, the bottom water 1, 2~7, and 8~16. Annual bimonthly water qualities were clearly discriminated into 3 clusters by PCA. But tend of cluster in the surface and bottom water was difference, period most of the research was low in nutrient. Ecology-based water quality criteria was a good level of grade II. Bimonthly results are shown as III grade(normal) at June and August, II grade(good) at October and December and I grade for February and April. Water quality was showed by the input of fresh water same as those of Kyoungin coastal area, Asan coastal area, Gunsan coastal and Mokpo coastal area in the Cheonsu.

Eco-friendly and efficient in situ restoration of the constructed sea stream by bioaugmentation of a microbial consortium (복합미생물 생물증강법을 이용한 인공해수하천의 친환경 효율적 현장 수질정화)

  • Yoo, Jangyeon;Kim, In-Soo;Kim, Soo-Hyeon;Ekpeghere, Kalu I.;Chang, Jae-Soo;Park, Young-In;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.83-96
    • /
    • 2017
  • A constructed sea stream in Yeongdo, Busan, Republic of Korea is mostly static due to the lifted stream bed and tidal characters, and receives domestic wastewater nearby, causing a consistent odor production and water quality degradation. Bioaugmentation of a microbial consortium was proposed as an effective and economical restoration technology to restore the polluted stream. The microbial consortium activated on site was augmented on a periodic basis (7~10 days) into the most polluted site (Site 2) which was chosen considering the pollution level and tidal movement. Physicochemical parameters of water qualities were monitored including pH, temperature, DO, ORP, SS, COD, T-N, and T-P. COD and microbial community analyses of the sediments were also performed. A significant reduction in SS, COD, T-N, and COD (sediment) at Site 2 occurred showing their removal rates 51%, 58% and 27% and 35%, respectively, in 13 months while T-P increased by 47%. In most of the test sites, population densities of sulfate reducing bacterial (SRB) groups (Desulfobacteraceae_uc_s, Desulfobacterales_uc_s, Desulfuromonadaceae_uc_s, Desulfuromonas_g1_uc, and Desulfobacter postgatei) and Anaerolinaeles was observed to generally decrease after the bioaugmentation while those of Gamma-proteobacteria (NOR5-6B_s and NOR5-6A_s), Bacteroidales_uc_s, and Flavobacteriales_uc_s appeared to generally increase. Aerobic microbial communities (Flavobacteriaceae_uc_s) were dominant in St. 4 that showed the highest level of DO and least level of COD. These microbial communities could be used as an indicator organism to monitor the restoration process. The alpha diversity indices (OTUs, Chao1, and Shannon) of microbial communities generally decreased after the augmentation. Fast uniFrac analysis of all the samples of different sites and dates showed that there was a similarity in the microbial community structures regardless of samples as the augmentation advanced in comparison with before- and early bioaugmentation event, indicating occurrence of changing of the indigenous microbial community structures. It was concluded that the bioaugmentation could improve the polluted water quality and simultaneously change the microbial community structures via their niche changes. This in situ remediation technology will contribute to an eco-friendly and economically cleaning up of polluted streams of brine water and freshwater.

Environmental Damage to Nearby Crops by Hydrogen Fluoride Accident (불화수소 누출사고 사례를 통한 주변 농작물의 환경피해)

  • Kim, Jae-Young;Lee, Eunbyul;Lee, Myeong Ji
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • BACKGROUND: Hydrogen fluoride is one of the 97 accident preparedness substances regulated by the Ministry of Environment (Republic of Korea) and chemical accidents should be managed centrally due to continual occurrence. Especially, hydrogen fluoride has a characteristic of rapid diffusion and very toxic when leaking into the environment. Therefore, it is important to predict the impact range quickly and to evaluate the residual contamination immediately to minimize the human and environmental damages. METHODS AND RESULTS: In order to estimate the accident impact range, the off-site consequence analysis (OCA) was performed to the worst and alternative scenarios. Also, in order to evaluate the residual contamination of hydrogen fluoride in crop, the samples in accident site were collected from 15-divided regions (East direction from accident sites based on the main wind direction), and the concentration was measured by fluoride ($F^-$) ion-selective electrode potentiometer (ISE). As a result of the OCA, the affected distance by the worst scenario was estimated to be >10 km from the accident site and the range by the alternative scenario was estimated to be about 1.9 km. The residual contamination of hydrogen fluoride was highest in the samples near the site of the accident (E-1, 276.82 mg/kg) and tended to decrease as it moved eastward. Meanwhile, the concentrations from SE and NE (4.96~28.98 mg/kg) tended to be lower than the samples near the accident site. As a result, the concentration of hydrogen fluoride was reduced to a low concentration within 2 km from the accident site (<5 mg/kg), and the actual damage range was estimated to be around 2.2 km. Therefore, it is suggested that the results are similar to those of alternative accident scenarios calculated by OCA (about 1.9 km). CONCLUSION: It is difficult to estimate the chemical accident-affecting range/region by the OCA evaluation, because it is not possible to input all physicochemical parameters. However simultaneous measurement of the residual contamination in the environment will be very helpful in determining the diffusion range of actual chemical accident.

Target candidate fish species selection method based on ecological survey for hazardous chemical substance analysis (유해화학물질 분석을 위한 생태조사 기반의 타깃 후보어종 선정법)

  • Ji Yoon Kim;Sang-Hyeon Jin;Min Jae Cho;Hyeji Choi;Kwang-Guk An
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.109-125
    • /
    • 2023
  • This study was conducted to select target fish species as baseline research for accumulation analysis of major hazardous chemicals entering the aquatic ecosystem in Korea and to analyze the impact on fish community. The test bed was selected from a sewage treatment plant, which could directly confirm the impact of the inflow of harmful chemicals, and the Geum River estuary where harmful chemicals introduced into the water system were concentrated. A multivariable metric model was developed to select target candidate fish species for hazardous chemical analysis. Details consisted of seven metrics: (1) commercially useful metric, (2) top-carnivorous species metric, (3) pollution fish indicator metric, (4) tolerance fish metric, (5) common abundant metric, (6) sampling availability (collectability) metric, and (7) widely distributed fish metric. Based on seven metric models for candidate fish species, eight species were selected as target candidates. The co-occurring dominant fish with target candidates was tolerant (50%), indicating that the highest abundance of tolerant species could be used as a water pollution indicator. A multi-metric fish-based model analysis for aquatic ecosystem health evaluation showed that the ecosystem health was diagnosed as "bad conditions". Physicochemical water quality variables also influenced fish feeding and tolerance guild in the testbed. Eight water quality parameters appeared high at the T1 site, indicating a large impact of discharging water from the sewage treatment plant. T2 site showed massive algal bloom, with chlorophyll concentration about 15 times higher compared to the reference site.

Microbial Influence on Soil Properties and Pollutant Reduction in a Horizontal Subsurface Flow Constructed Wetland Treating Urban Runoff (도시 강우유출수 처리 인공습지의 토양특성 및 오염물질 저감에 따른 미생물 영향 평가)

  • Chiny. C. Vispo;Miguel Enrico L. Robles;Yugyeong Oh;Haque Md Tashdedul;Lee Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.168-181
    • /
    • 2024
  • Constructed wetlands (CWs) deliver a range of ecosystem services, including the removal of contaminants, sequestration and storage of carbon, and enhancement of biodiversity. These services are facilitated through hydrological and ecological processes such as infiltration, adsorption, water retention, and evapotranspiration by plants and microorganisms. This study investigated the correlations between microbial populations, soil physicochemical properties, and treatment efficiency in a horizontal subsurface flow constructed wetland (HSSF CW) treating runoff from roads and parking lots. The methods employed included storm event monitoring, water quality analysis, soil sampling, soil quality parameter analysis, and microbial analysis. The facility achieved its highest pollutant removal efficiencies during the warm season (>15℃), with rates ranging from 33% to 74% for TSS, COD, TN, TP, and specific heavy metals including Fe, Zn, and Cd. Meanwhile, the highest removal efficiency was 35% for TOC during the cold season (≤15℃). These high removal rates can be attributed to sedimentation, adsorption, precipitation, plant uptake, and microbial transformations within the CW. Soil analysis revealed that the soil from HSSF CW had a soil organic carbon content 3.3 times higher than that of soil collected from a nearby landscape. Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) in the inflow and outflow were recorded as C:N:P of 120:1.5:1 and 135.2:0.4:1, respectively, indicating an extremely low proportion of N and P compared to C, which may challenge microbial remediation efficiency. Additionally, microbial analyses indicated that the warm season was more conducive to microorganism growth, with higher abundance, richness, diversity, homogeneity, and evenness of the microbial community, as manifested in the biodiversity indices, compared to the cold season. Pollutants in stormwater runoff entering the HSSF CW fostered microbial growth, particularly for dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes, which have shown moderate to strong correlations with specific soil properties and changes in influent-effluent concentrations of water quality parameters.

Physicochemical and textural properties of thawed pork by vacuum tumbling (진공 텀블링을 이용한 해동 돈육의 이화학적 및 조직학적 특성)

  • Su-Jin Park;Won-Ho Hong;Seung-Min Oh;Chang-Hee Cho;Jiyeon Chun
    • Food Science and Preservation
    • /
    • v.31 no.3
    • /
    • pp.423-432
    • /
    • 2024
  • In this study, a vacuum tumbler with 4 impellers (DVT) was designed and applied for thawing frozen pork (vacuum -60 kPa, jacket 35℃, 1 rpm). Quality characteristics of the thawed pork were compared with those of industrially thawed meat by natural air at room temperature (NAT) and imported vacuum tumbler (IVT). The thawing time for frozen pork (303.36 kg) using DVT (165 min) was much shorter than that of NAT (4,200 min). DVT-thawed pork had lower drip loss (0.85%) than NAT (2.08%). DVT-thawed pork showed a pH of 5.92, a total bacterial count of 1.96±0.02 log CFU/g and no coliforms. Deteriorations in fat (TBARS 0.31±0.01 MDA mg/kg) and protein (VBN 5.67±1.98 mg%) in DVT-thawed pork were significantly lower than those of NAT (p<0.05). DVT-thawed pork had a high water-holding capacity (WHC, 97.5%). The hardness (34.59±0.46 N) and chewiness (188.21±0.17) of cooked DVT-thawed pork were about 5-6 times lower than those of NTA. Microstructure (SEM) showed myofibrillar damage in NAT-thawed pork, whereas dense myofibrillar structure was observed in DVT-thawed pork. DVT was better or similar to IVT in all evaluation parameters. The designed DVT is expected to be used as an efficient thawing method in terms of processing time and yield and to produce thawed meat with high WHC, soft texture, and low spoilage by minimizing tissue damage.