• Title/Summary/Keyword: physical uncertainty

Search Result 263, Processing Time 0.024 seconds

Evaluation and Development in Sound Design a Matter of Combining Physical and Perception Data in Noise and Vibration

  • Schulte-Fortkamp, Brigitte
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.43-43
    • /
    • 2010
  • Presently, there is the dilemma of uncertainty with respect to the evaluation of sound and vibration based on the fact that there is obviously no agreement upon appropriate methods to measure the "truth" concerning the acceptance of sound and vibration. To evaluate properly physical and perception data in sound and vibration it is necessary to implement new methods and innovative approaches to understand the input of human response in sound design. Fortunately, an elaborate dialogue of the usefulness and applicability of those approaches is in progress. Moreover, the need of using and combining perception and physical data in order to comprehend the process of human perception and evaluation sufficiently is widely accepted. However, still the question remains how the goal of an adequate combination can be achieved. Clearly, themultidimensional human perception cannot be easily reduced to singular numbers. Moreover, factors, among others the meaning of the sound, the composition of the diverse sound sources, the listener's attitude, expectations and experiences, are significant parameters which have to be considered to comprehend the different perceptions and evaluations with regard to specific stimuli. Taking under consideration the physical, psychological, and cognitive dimensions as well as the integration of aspects of design require partially various new approaches. While binaural measurement and analysis technologies and psycho-acoustics are well established as they are proved to be valuable auxiliary tools; it has not been achieved to develop generally acceptable measurement units concerning sound quality. Consequently, there is a need for new approaches and methods which make it possible to comprehend sufficiently the process of perception and evaluation. Going with people's mind will be one solution for the future; thisconcept will be introduced based on the development in sound design.

  • PDF

A W-Band Millimeter-Wave Power Standard Transfer System Using the Direct Comparison Method (직접 비교법을 이용한 W-Band 밀리미터파 전력 표준 전달 시스템)

  • Kwon, Jae-Yong;Kang, Tae-Weon;Kang, Jin-Seob;Lee, Dong-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.47-54
    • /
    • 2013
  • This paper introduces a W-band millimeter-wave power standard transfer system using the direct comparison method. The transfer system was developed to evaluate the effective efficiency and calibration factor of a W-band waveguide power sensor. The evaluation method and the measured results of the directional coupler that characterizes the calibration system are studied. The uncertainties of the standard transfer system are investigated, and the major uncertainty contributors are discussed as well. The performance of the realized W-band power standard transfer system was verified by comparing results with reference values.

Climatological Estimation of Sea Surface CO2 Partial Pressure in the North Pacific Oceans by Satellite data

  • Osawa, Takahiro;Akiyama, Masatoshi;Sugimori, Yasuhiro
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.237-242
    • /
    • 1999
  • As one of the key parameters to determine $CO_2$ flux between air - sea interface, it is quite important to know p$CO_2$, which has involved much uncertainty, mainly due to the complex variations of sea surface p$CO_2$ and the paucity of samples, made in ocean. In order to improve the interrelationship between partial pressure (p$CO_2$) and different physical and biochemical parameters in global sea surface water, a new empirical relation is established to correlate and parameterize p$CO_2$ in the mixed layer using the data from recent WOCE cruises. Meanwhile, by new empirical relation, abundant historical hydrographic and nutrients ship data, Levitus data set and NOAA/AVHRR(SST), p$CO_2$ have been accumulated and applied. Then effort has to be made fur promotion of this study to correlate and parameterize p$CO_2$ in the mixed Layer with different physical and biochemical parameters. and further attribute this huge historical data sets and NOAA/AVHRR(SST) data to estimate p$CO_2$. In this paper we analyzed more interrelationship between the model and ship/satellite data set. Finally, the inter-annual variations of p$CO_2$ in sea are presented and discussed.

  • PDF

An Experimental Study on Properties of Seabed Unconsolidated Sediment for Wind Power System Construction (해상풍력발전단지 건설 시 해양미고결지반 물성 파악을 위한 실험 연구)

  • Yoo, Hyun-Jong;Lim, Jong-Se;Shin, Sung-Ryul;Jang, Won-Yil;Yoon, Ji-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.365-373
    • /
    • 2008
  • When the wind power system is planned to construct, it is important to understand the physical, chemical and mechanical properties of sediment. Especially, If it is the seabed unconsolidated sediment, we need to experiment on sediment through seabed unconsolidated sediment test and sediment survey. Because the sediment's properties are different as its formation, accumulation and load, unconsolidated sediment is difficult to be expected to its behavior. So we can estimate suitability for mechanical material and decrease the uncertainty through seabed unconsolidated sediment test. Seabed unconsolidated sediment test can be experimented in laboratory or in-situ as purpose, in-situ condition, economic problem. In this study, we sampled the seabed unconsolidated sediment at offshore around Korea Maritime University and measured properties of sediment through the laboratory test, showed the effect on physical properties of seabed unconsolidated sediment when the wind power system is planned to construction.

A study on the Types of perceived risk in consumer's purchasing public apartment (아파트 구매자가 인지하는 위험유형에 관한 연구 - 전주지역을 중심으로 -)

  • 이종혜
    • Journal of the Korean Home Economics Association
    • /
    • v.23 no.1
    • /
    • pp.49-57
    • /
    • 1985
  • The central problem of purchasing houses is choice, which is accompanied by perception of risk. Perceived risk is defined as a risk perceived by a consumer subjectively in choice situations. The components of perceived risk are uncertainty and consequence. There are seven types of perceived risk in purchasing houses. Those are financial risk, functional risk, social risk, psychological risk, physical risk, time risk and future opportunity lost risk. The empirical survey about comsumer's purchasing Public Apartment suggests : 1) In general, rspondents perceive relatively high risk in purchasig Public Apartment. 2) Of seven risk types, financial, functionalm, future opportunity lost, time, and social risk correlate highest with overall perceived risk and explain the variance of it. 3) Physical and psychological risks don't correlate significantly with overall perceived risk. From the findings in empirical analysis, consumers are recommended to device riskreduction activities in purchasing Public Apartment. 1. Active information search is needed in purchasing Public Apartment in order to reduce overall perceived risk. 2. Housing concept should change from ownership to rental thinking. 3. Consumers should be accustomed to Housing Loans by bank. 4. Purchasing goals should be established clearly before purchasing houses. 5. Careful deliberation is required and informations from personal sources are useful.

  • PDF

Robust Cooperative Relay Beamforming Design for Security

  • Gong, Xiangwu;Dong, Feihong;Li, Hongjun;Shao, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4483-4501
    • /
    • 2015
  • In this paper, we investigate a security transmission scheme at the physical layer for cooperative wireless relay networks in the presence of a passive eavesdropper. While the security scheme has been previously investigated with perfect channel state information(CSI) in the presence of a passive eavesdropper, this paper focuses on researching the robust cooperative relay beamforming mechanism for wireless relay networks which makes use of artificial noise (AN) to confuse the eavesdropper and increase its uncertainty about the source message. The transmit power used for AN is maximized to degrade the signal-to-interference-plus-noise-ratio (SINR) level at the eavesdropper, while satisfying the individual power constraint of each relay node and worst-case SINR constraint at the desired receiver under a bounded spherical region for the norm of the CSI error vector from the relays to the destination. Cooperative beamforming weight vector in the security scheme can be obtained by using S-Procedure and rank relaxation techniques. The benefit of the proposed scheme is showed in simulation results.

Evaluations of a Commercial CLEANBOLUS-WHITE for Clinical Application

  • Geum Bong Yu;Jung-in Kim;Jaeman Son
    • Progress in Medical Physics
    • /
    • v.35 no.1
    • /
    • pp.10-15
    • /
    • 2024
  • Purpose: This study aimed to comprehensively investigate the diverse characteristics of a novel commercial bolus, CLEANBOLUS-WHITE (CBW), to ascertain its suitability for clinical application. Methods: The evaluation of CBW encompassed both physical and biological assessments. Physical parameters such as mass density and shore hardness were measured alongside analyses of element composition. Biological evaluations included assessments for skin irritation and cytotoxicity. Dosimetric properties were examined by calculating surface dose and beam quality using a treatment planning system (TPS). Additionally, doses were measured at maximum and reference depths, and the results were compared with those obtained using a solid water phantom. The effect of air gap on dose measurement was also investigated by comparing measured doses on the RANDO phantom, under the bolus, with doses calculated from the TPS. Results: Biological evaluation confirmed that CBW is non-cytotoxic, nonirritant, and non-sensitizing. The bolus exhibited a mass density of 1.02 g/cm3 and 14 shore 00. Dosimetric evaluations revealed that using the 0.5 cm CBW resulted in less than a 1% difference compared to using the solid water phantom. Furthermore, beam quality calculations in the TPS indicated increased surface dose with the bolus. The air gap effect on dose measurement was deemed negligible, with a difference of approximately 1% between calculated and measured doses, aligning with measurement uncertainty. Conclusions: CBW demonstrates outstanding properties for clinical utilization. The dosimetric evaluation underscores a strong agreement between calculated and measured doses, validating its reliability in both planning and clinical settings.

Adaptive Neural Network Control for an Autonomous Underwater Vehicle (신경회로망을 이용한 자율무인잠수정의 적응제어)

  • 이계홍;이판묵;이상정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1023-1030
    • /
    • 2002
  • Since the dynamics of autonomous underwater vehicles (AUVs) are highly nonlinear and their hydrodynamic coefficients vary with different vehicle's operating conditions, high performance control systems of AUVs are needed to have the capacities of teaming and adapting to the variations of the vehicle's dynamics. In this paper, a linearly parameterized neural network (LPNN) is used to approximate the uncertainties of the vehicle dynamics, where the basis function vector of the network is constructed according to the vehicle's physical properties. The network's reconstruction errors and the disturbances in the vehicle dynamics are assumed be bounded although the bound may be unknown. To attenuate this unknown bounded uncertainty, a certain estimation scheme for this unknown bound is introduced combined with a sliding mode scheme. The proposed controller is proven to guarantee that all signals in the closed-loop system are uniformly ultimately bounded (UUB). Numerical simulation studies are performed to illustrate the effectiveness of the proposed control scheme.

Kriging Dimension Reduction Method for Reliability Analysis in Spring Design (스프링 설계문제의 신뢰도 해석을 위한 크리깅 기반 차원감소법의 활용)

  • Gang, Jin-Hyuk;An, Da-Wn;Won, Jun-Ho;Choi, Joo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.422-427
    • /
    • 2008
  • This study is to illustrate the usefulness of Kriging Dimension Reduction Method(KDRM), which is to construct probability distribution of response function in the presence of the physical uncertainty of input variables. DRM has recently received increased attention due to its sensitivity-free nature and efficiency that considerable accuracy is obtained with only a few number of analyses. However, the DRM has a number of drawbacks such as instability and inaccuracy for functions with increased nonlinearity. As a remedy, Kriging interpolation technique is incorporated which is known as more accurate for nonlinear functions. The KDRM is applied and compared with MCS methods in a compression coil spring design problem. The effectiveness and accuracy of this method is verified.

  • PDF

Physical Modeling of Soil-Structure Systems Response to Earthquake Loading

  • Abdoun, Tarek;Gonzalez, Lenart
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.43-51
    • /
    • 2007
  • Liquefaction-induced lateral spreading continues to be a major cause of damage to deep foundations. Currently there is a huge uncertainty associated with the maximum lateral pressures and forces applied by the liquefied soil to deep foundations. Furthermore, recent centrifuge and is shaking table tests of pile foundations indicate that the permeability of the liquefied sand is an extremely important and poorly understood factor. This article presents experimental results and analysis of one of the centrifuge tests that were conducted at the 150 g-ton RPI centrifuge to investigate the effect of soil permeability in the response of single piles and pile groups to lateral spreading.