• Title/Summary/Keyword: physical phenomena

Search Result 811, Processing Time 0.037 seconds

Numerical Computation of the Mass Transfer between Gaseous and Particulate Materials Considering the Hysteresis Phenomena of Atmospheric Aerosol (에어로솔의 이력현상을 고려한 대기 중 기체상/입자상 간의 물질전달 수치모사)

  • Kim, Du-Eil;Yoo, Kee-Youn
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.202-218
    • /
    • 2010
  • It is well known that the atmospheric inorganic aerosol has the hysteresis phenomena depending on the history of relative humidity. However, the current computational researches have assumed that the physical/chemical state of atmospheric aerosol is only determined by a branch of hysteresis, efflorescence or deliquescence. In this work, we applied the MATLAB-based UHAEROm thermodynamics module to simulate the dynamic interaction between gaseous species $NH_3$ and $HNO_3$, and the two mono-disperse particulate populations in the course of efflorescence and deliquescence, respectively. We conducted the 10 case studies considering the particulate phase with the atmospherically prevailing chemical composition and found that the final states of the particles are determined through the qualitatively five different trajectories by the dynamic interaction between gaseous and two different kinds of particulates. As a result, we show that the coexistence of meta-stable and stable particles drives the different physical/chemical destination comparing with the ones generated from the solitary efflorescence or deliquescence branch.

Material Design Using Multi-physics Simulation: Theory and Methodology (다중물리 전산모사를 이용한 물성 최적화 이론 및 시뮬레이션)

  • Hyun, Sangil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.767-775
    • /
    • 2014
  • New material design has obtained tremendous attention in material science community as the performance of new materials, especially in nano length scale, could be greatly improved to applied in modern industry. In certain conditions limiting experimental synthesis of these new materials, new approach by computer simulation has been proposed to be applied, being able to save time and cost. Recent development of computer systems with high speed, large memory, and parallel algorithms enables to analyze individual atoms using first principle calculation to predict quantum phenomena. Beyond the quantum level calculations, mesoscopic scale and continuum limit can be addressed either individually or together as a multi-scale approach. In this article, we introduced current endeavors on material design using analytical theory and computer simulations in multi-length scales and on multi-physical properties. Some of the physical phenomena was shown to be interconnected via a cross-link rule called 'cross-property relation'. It is suggested that the computer simulation approach by multi-physics analysis can be efficiently applied to design new materials for multi-functional characteristics.

A Logical Simulation of Dynamic Natural Phenomena Based on Event Propagation Graph (사건 전파그래프에 기반한 동적인 자연현상의 논리적 시뮬레이션)

  • Park, Jung-Yong;Park, Jong-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.4
    • /
    • pp.10-21
    • /
    • 2001
  • This paper develops a logical simulation method for by dyversity of situations. Most existing systems, for example, games and infant tutoring systems lead users to virtual environment with unfolding situations, but are not designed to induce the change of the environment itself. In this paper, a logically simulated environment is created by defining situations and single events based on situation hierarchy structure. We elaborate the occurrence of events by classifying the causality. The occurrence or natural phenomena is dictated by physical laws and natural phenomena are expressed as the transition of the event based on event association. Specifically we define the source of the event for natural phenomena and we consider the existence of objects as a primary factor in event occurrence. The advantages of this approach include the reuse of events, that is, different events can be generated in the same flow with fresh conditions. This allows us to implement a more practical and logical environment. A drawback to this method is the difficulty in dividing a situation into events. The proposed method was implemented in the context of the change of season among natural phenomena.

  • PDF

Critics on Ludwig Boltzmann's Methodology of Science (루드빅 볼츠만의 과학 방법론에 대한 역사-비판적 검토)

  • Moun, Jean-sou;Lee, Woo-buong
    • Journal of Korean Philosophical Society
    • /
    • v.117
    • /
    • pp.57-84
    • /
    • 2011
  • As for the methodology of physical science, on the one side, Ludwig Boltzmann was declined to Scientific Realist and at the same time Epistemological Idealist. But on the other. He was neither fully nor consistently either one of them, because of rejecting the causal realism of the former and the belief in absolute certainty of the latter. Is there nevertheless any evidence that he had a coherent world view of his own? Yes. In short, he seems to identify his own position with what is called a mind-matter identity theory. In 1897, he supported that psychological processes are identical with certain processes in the brain(realism). And in 1903, he said : "Physics is not separated from psychology. They are only different sides." But Boltzmann did not explain concretely the possibility of this identity. So I tried to construct one theory of identity which is suitable for understanding problems n the physical world, though whether it would work for a full-scale world view which includes both physical and mental phenomena remains problematic. If light phenomena, for example, tend to be measured in terms of some contexts as if light were a wave and in others as if light were a particle, then one may be able to reasonably suppose that light has whatever characteristics in itself which it must have in order to seem like a wave under some conditions of measurement and like a particle in others. If this theory is provisionally to mental phenomena as well, it would mean that reality has those characteristics in itself which it must have to appear as it does to the various faculties of the mind and as it is measured in different physical situations. This is probably not what Boltzmann meant by his theory of identity, since it is very ontological and metaphysical. But in my opinion it is by far the most reasonable identity theory.

Physical knowledge in children: Children's developing understanding of object motion (아동의 물리지식: 물체의 운동에 대한 아동의 이해와 발달)

  • Park Sunmi
    • Korean Journal of Cognitive Science
    • /
    • v.15 no.4
    • /
    • pp.31-47
    • /
    • 2004
  • This study was carried out to examine the development of physical knowledge in children. Eighty children aged 3- to 11-year-old and 16 adults were participated in this study. Participants' knowledge about failing, sliding and sinking/floating objects was investigated to understand what kind of knowledge they had, whether their knowledge was organized as theory and what was the nature of the developmental change in physical knowledge. Results showed that, for falling object task children of all age had correct knowledge about object's falling phenomena. However, there were age differences in children's understanding of the cause of object's falling. As the children's age decreased, the frequency of explanation referring to the absence of supper rather than the gravity as the cause of falling phenomena increased. For the sliding object task, children of all age could predict the motion of sliding object correctly. But only a few 9- and 11-year-old children could understand the effect of object weight and relations between gravity, frictional force and their interactions. Children under age 7 showed no evidence of possessing these knowledge. For sinking or floating object task, children of all age and even adults showed difficulties in understanding the sinking or float phenomena per se. For the cause of these phenomena although a few 9- and 11-year-old children referred to buoyancy as the cause, they had no correct knowledge about the buoyancy. This was also true for the adults. As a conclusion, the results of this study suggested that, not 3, but as young as 5-year-old children's physical knowledge exited as a form of naive theory in terms of their use as a causal devise in explaining the cause of object motion. However, even the theory of 9- and 11-year-old children was lack of the abstractness and coherence, which were also important characteristics of a theory. Finally, developmental change in physical knowledge proceeded toward more frequent and consistent use of physical knowledge as causal device and more abstract and coherently organized theory.

  • PDF

Data Exchange between Cadastre and Physical Planning by Database Coupling

  • Kim, Kam-Rae;Choi, Won-Jun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.1
    • /
    • pp.69-75
    • /
    • 2007
  • The information in physical planning field shows the socio-economic potentials of land resources while cadastral data does the physical and legal realities of the land. The two domains commonly deal with land information but have different views. Cadastre has to evolved to the multi-purpose ones which provide value-added information and support a wide spectrum of decision makers by mixing their own information with other spatial/non-spatial databases. In this context, the demands of data exchange between the two domains is growing up but this cannot be done without resolving the heterogeneity between the two information applications. Both of either discipline sees the reality within its own scope, which means each has a unique way to abstract real world phenomena to the database. The heterogeneity problem emerges when an GIS is autonomously and independently established. It causes considerable communication difficulties since heterogeneity of representations forms unique data semantics for each database. The semantic heterogeneity obviously creates an obstacle to data exchange but, at the same time, it can be a key to solve the problems too. Therefore, the study focuses on facilitating data sharing between the fields of cadastre and physical planning by resolving the semantic heterogeneity. The core job is developing a conversion mechanism of cadastral data into the information for the physical planning by DB coupling techniques.

Physical and Mechanical Properties of Particleboard made with Powdered Tannin Adhesives (분말상 탄닌수지로 제조한 PB의 물리.기계적 특성)

  • 강석구;이화형
    • Journal of the Korea Furniture Society
    • /
    • v.14 no.2
    • /
    • pp.1-12
    • /
    • 2003
  • This study was carried out to determine the mechanical and physical properties of particle boards glued with condensed tannin (Wattle Tannin) powder that was single-molecule phenolic compounds like powdered phenolic resin. Our findings are; 1) It is necessary to spray water on the chip surfaces for effective application of powdered -form tannin resin. It shows that the best and optimum mat moisture increase is 14% of water spray on the surface of chips for developing PB properties. 2) In general, for both liquid and powdered tannin adhesives, their physical and mechanical properties has been proportional to the increase of resin level. But, the most efficient addition ratio is 16% of resin on dry basis. Specially, it is found that the resin level influences on the amount of free formaldehyde emission. The higher the resin level is, the lower the emission is. These phenomena seem to result from the increase of hexamine or formaline in the adhesives used as a hardener, that reduce the free-formaldehyde amount by reaction of tannin of poly-molecule and water. 3) The optimum condition for manufacturing PBs is the condition of hexamine of 5% and formaline of 6% in mechanical and physical properties. Hexamine is superior to formaline in mechanical and physical properties along with the control of the free formaldehyde emission amount. The result of NaOH's addition is insignificant in all experiments of both mechanical and physical properties.

  • PDF

CFD Analysis for the Flow Phenomena of the Narrow Channels in Plate Heat Exchanger for Intercooler (인터쿨러용 판형열교환기 내부유로의 유동현상에 관한 전산유체해석)

  • 윤천석;한승한
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.91-100
    • /
    • 2004
  • Plate heat exchangers (PHE) have been widely used in different industrial applications, because of high heat transfer efficiency per unit volume. Basic study is performed for PHE to the application of intercooler in automobile. In order to understand the flow phenomena in the plate heat exchanger, a channel which was formed by the upper and lower plate in single plate was considered as calculation domains. Because chevrons attached on the upper plate are brazed with chevrons attached on the lower plate, the flow channel has very complex configuration. This complex geometry was analyzed by Fluent. In order to validate this methodology the proper experimental and theoretical data are collected and compared with numerical results. Finally, due to the lack of experimental values for PHE to the application of intercooler, various chevron angles and air velocities at inlet were tested in terms of physical phenomena. From this point of view, results of velocity vector, path lines, static pressure, heat flux, heat transfer coefficient, and Nusselt number are physically reasonable and accepted for the solutions. From these results, the correlations for pressure drop and Nusselt number with respect to chevron angle and Reynolds number in specific PHE are obtained for the design purpose. Thus, the methodology of the flow analysis in the full geometry of the channel was established for the predictions of performance in plate heat exchanger.

Investigation on the Change of Ammonia Dissociation for Satellite Thruster According to the Catalyst Loss (위성추력기에서 촉매유실에 따른 암모니아 해리도 변화에 대한 연구)

  • Hwang, Chang-Hwan;Lee, Sung-Nam;Baek, Seung-Wook;Kim, Su-Kyum;Yu, Myoung-Jong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.218-222
    • /
    • 2011
  • During the development of the iridium catalyst for domestic production, the catalyst failure, loss, sintering phenomena are observed by high pressure and temperature. By these abnormal failure of catalyst bed, the performance of thruster is degraded. To figure out the detail phenomena on the damaged catalyst bed, a numerical analysis code is developed by assuming the catalyst bed as an one dimensional porous media. The numerical analysis code is validated with experiment data. Thereby, resulting physical phenomena are examined by considering the variation of catalyst bed characteristics incurred by catalyst granule failure. Through these numerical analyses we figure out the effect of the catalyst loss on the decomposition of hydrazine and ammonia.

  • PDF

Moreton Wave and EUV Wave Associated with the 2010 February 7 and 2010 August 18 Flares

  • Asai, Ayumi;Isobe, Hiroaki;Takasao, Shinsuke;Shibata, Kazunari
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.83.1-83.1
    • /
    • 2011
  • Solar flares are very spectacular, and are associated with various phenomena. Coronal shocks or disturbances are one of such flare-related phenomena. Although Moreton waves and X-ray waves are well explained with MHD first mode shocks propagating in the corona, there still remains a big problem on the nature of the waves, since they are very rare phenomena. On the other hand, EIT waves (or EUV waves) have been paid attention to as another phenomenon of coronal disturbances. However, the physical features (velocity, opening angle, and so on) are much different from those for Moreton waves and X-ray waves. We report detailed features of the coronal disturbances associated with the 2010 February 7 and the 2010 August 18 flares. For the former flare we analyzed the H-alpha images obtained by SMART at Hida Observatory, Kyoto University, Japan and by a flare telescope at National Astronomical Observatory of Japan, the X-rays images taken by Hinode/XRT, and the EUV images obtained by the both satellites of STEREO, and found the Moreton wave, X-ray wave, and EIT wave, simultaneously. In the latter flare, on the other hand, we observed a very fast EUV wave in EUV images taken by SDO/AIA. The propagating speed is comparable to the MHD first mode wave, while there is no obvious evidence of shocks for this flare. From these results, we discuss the nature of coronal disturbances.

  • PDF