• Title/Summary/Keyword: physical material property

Search Result 370, Processing Time 0.032 seconds

Synthesis of Alumina-Silica ceramic material(II) (알루미나-실리카계 세라믹복합체 제조 연구(II))

  • Kim Cheol-soo;Lee Hyung-Bock
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.48-53
    • /
    • 2005
  • In this study, to improve the ballistic efficiency of very brilliant alumina-silica armor material, forming press and sintering temperature were changed. After physical/mechanical measurement, we measured ballistic properties about KE(Kinetic Energy, L/D=10.7, tungsten heavy alloy) and HEAT(High Explosive Anti-Tank, K215) projectiles and analyzed them. As a result, in $1235^{\circ}C$, it appeared the highest ballistic efficiency about HEAT and it improved $22\%$ ballistic efficiency, better than invented alumina-silica armor material before.

A Study on the Development of Photoelastic Experiment Model Material for Transversely Isotropic Material (횡등방성체용 광탄성재료 개발에 관한 연구)

  • 황재석;김병일;이광호;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1876-1888
    • /
    • 1995
  • In this paper, glass surface-mat reinforced epoxy(G.S.R.E.) is developed, It is assured that the material(G.S.R.E.) can be used as photoelastic model material and it satisfy with the required properties of photoelastic model material. Therefore, the material can be used as model material of transparent photoelastic experiment when we analyze the stress distributions of transversely isotropic material by photoelastic experiment. When we use G.S.R.E. as photoelastic experiment model material, we had better use the G.S.R.E. which fiber volume ratio is less than 0.7% in the high temperature(stress freezing method) and than 1.74% in the room temperature. Relationships between stress fringe value and elastic modulus in transversely isotropic material are developed in this paper, it is assured by experiment that they are established in the room temperature or in the high temperature. Therefore we can obtain stress fringe value or elastic modulus from the relationships between stress fringe value and elastic modulus.

Conservation Treatment of Sand Stone by Pressurized Impregnation with Acrylic Materials (아크릴계 보존처리제를 이용한 사암의 가압함침 보존처리)

  • Kim, Youn-Cheol;Kim, Sa-Duk;Kim, Hyung-Joong
    • Journal of Conservation Science
    • /
    • v.27 no.4
    • /
    • pp.395-401
    • /
    • 2011
  • After pressurized impregnation treatment, which has been proposed as an effective conservation method for stone cultural property, was executed with methyl metacrylate (MMA), MMA-butyl acrylate (PMB73) mixture and MMA-vinyl trimethoxy silane (PMV5) co-monomer mixture, the physical-chemical properties on the sand stone and the granite impregnated were evaluated. Compared to the case of granite, the impregnation ratios of sand stone showed larger values in the range of 3.2 to 3.7 wt% and these were increased up to 32% when the decompression process was applied to autoclave. The physical properties of sand stone such as anti-moisture property, flexural strength, impact property and ultrasonic velocity were also higher values than those of granite, which can be interpreted by high impregnation ratio resulted in many void within sand stone. The impact failure energy was 1.22 J for PMMA, 1.84 J for PMB73, and 2.8 J for PMV5, respectively. Since the inorganic affinity of treatment agent is more effective than the molecular structure of acrylic agent, PMV5 improved inorganic property indicates the optimum impact property.

Leak-Before-Break Assessment Margin Analysis of Improved SA508-Gr.1a Pipe Material (개선된 SA508-Gr.1a 배관재의 파단전누설평가 여유도 분석)

  • Kim, Maan-Won;Lee, Yo-Seob;Shin, In-Whan;Yang, Jun-Seog;Kim, Hong-Deok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.42-48
    • /
    • 2020
  • The effect of improving the tensile and J-R fracture toughness properties of SA508 Gr.1a on the LBB margin for the main steam pipe is investigated. The material properties and microstructure images of the existing main steam piping material SA106 Gr.C used in domestic nuclear power plants and the newly selected material SA508 Gr.1a were compared. For each material, LBB margins were calculated and compared through finite element analysis and crack instability evaluation. The LBB margin of the improved SA508 Gr.1a is found to be greatly improved compared to that of the existing SA106 Gr.C and SA508 Gr.1a. This is because of the increased material's strength and J-R fracture toughness compared to the previous materials. In order to analyze the effect of physical property change on the LBB margin, the sensitivity of each LBB margin according to the variation of tensile strength and J-R fracture toughness was analyzed. The effect of the change in tensile strength was found to be greater than that of the change in fracture toughness. Therefore, an increase in strength significantly influenced the improvement of the LBB margin of the improved SA508 Gr.1a.

A Study on the Basic Physical Properties of Water-Soluble Rubber Asphalt-based Coating Waterproofing for Exterior Application (수용성 고무 아스팔트계 도막방수재의 실외 적용을 위한 기본 물성 연구)

  • Kang, Hyo-Jin;Youn, Sung-Hwan;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.553-561
    • /
    • 2020
  • Water-soluble rubber asphalt-based waterproofing material, which is one of the waterproofing materials for building structures, is mainly used indoors (toilet, kitchen, balcony, etc.). In general, asphalt-based materials are used for non-exposed installation, rather than as exposed type as they do not deviate from their usual basic black pigmentation, and water-soluble rubber asphalt-based coating waterproofing materials are basically limited to indoors because of their low physical properties. Accordingly, in order to improve the tensile and elongation properties, a silane coupling agent, an inorganic filler, and a processor oil w ere added to improve the physical properties, and accordingly, the basic physical properties of the outdoor coating waterproofing material quality standard were analyzed. As a result, the water-soluble rubber asphalt coating waterproofing material compared with the exposure quality standard showed a result that exceeded the basic physical property quality standard of silicone rubber in all items under test evaluation, but the tensile strength and tear strength of the first class of urethane rubber were chloroprene. It was found that the performance compared to the quality standards of rubber-based tear strength was about 34.2% to about 40.8%.

Friction Stability of Materials with $ZrSiO_4$ Addition ($ZrSiO_4$가 첨가된 마찰재의 마찰 안정성)

  • 이동규;박상찬
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.110-119
    • /
    • 1999
  • This study was conducted to invent brake of non-steel material without using asbestos and disc pad added $ZrSiO_4$ was made. The physical properties and friction characteristics were investigated by varying methods. The physical properties were inspected of shear strength, hardness, heat expansion, specific gravity, % of gashole, thickness variation, weight variation and pH variation. The friction stability was measured by friction coefficient on variations of speed, temperature and deceleration condition. It was found that the physical properties were in general excellent. According to the friction characteristics tests, $ZrSiO_4$ had an abrasive property. As a results, the friction materials containing $ZrSiO_4$ 3~5vol% showed better resistance to fading and improved friction stability than the materials without ZrSiO$_4$.

  • PDF

The effect of the material properties for the commercially available cervical braces on the skin tissue (수종 시판 경추보조기의 물성이 피부조직에 미치는 영향)

  • Kim, K.T.;Park, J.C.;Choi, J.B.;Choi, K.;Mun, M.S.;Suh, H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.501-506
    • /
    • 1997
  • This is to investigate the physical properties of the commercially available Soft, Thomas, Minerva, and Philadelphia cervical braces which are widely used in orthopedics, neurosurgery, and rehabilitation medicine clinics as assisting devices or physical stabilization of cervical vertebrates, to use as a basic data or designing new type brace. Tensile strengths were observed by universal mechanical measuring device and Thomas brace required the highest stress to break by tensile stress. Durabilities against continuous frictional forces were also determined, and Minerva brace demonstrated the longest frictional time until being perforated. and Thomas/minerva braces are superior to the other braces in the effect of the material property on the skin tissue, as the animal test. According to these results, polyethylene is recommendable as a frame and preparation of pores in the material is favorable to provide ventilation to skin.

  • PDF

Physical Properties of Calcium Silicate Inorganic Insulation Depending on Curing Time (칼슘실리케이트 무기 단열소재의 양생기간에 따른 물리 특성)

  • Park, Jae-Wan;Chu, Yong-Sik;Jeong, Jae-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.529-534
    • /
    • 2016
  • Calcium silicate inorganic insulating material is a porous material which is made of 90 wt% of cement. Unlike existing inorganic insulation materials, it is produced without high temperature curing process and also it costs much less than existing inorganic insulation materials. It is an innovative insulation material that supplemented disadvantages of conventional inorganic insulation material. Researches and developments about inorganic insulation materials have been actively researched abroad. Calcium silicate insulation has $0.13g/cm^3$ of specific gravity. Its heat conductivity is under 0.050W/mK, which it similar to conventional inorganic insulation. However, it has weak compressive strength compared to other inorganic insulation. The point of this research is to manifest that calcium silicate inorganic insulating material can have certain compressive strength after curing process with high insulating performance and to find out the proper curing methods and period.

Preparation of Non-Sintering High Strength Aggregate using Coal ash (석탄회를 이용한 비소성 고강도 골재의 제조)

  • 김도수;박대영;문정호;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.233-238
    • /
    • 1998
  • For substitution for crushed sand, high strength aggregate for cement and concrete using coal ash as a main material was prepared and then compared its physical properties with those of crushed sand. Effect of mix proportion change of raw materials on the property of aggregate was checked. On the basis of these experimental results we are going to comprehend the reutilization of coal ash and utilize a basic data for judging possibility the substitution of crushed sand.

  • PDF

Investigation on the Effectiveness of Aqueous Carbonated Lime in Producing an Alternative Cementitious Material

  • Jo, Byung-Wan;Chakraborty, Sumit;Choi, Ji Sun;Jo, Jun Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.15-28
    • /
    • 2016
  • With the aim to reduce the atmospheric $CO_2$, utilization of the carbonated lime produced from the aqueous carbonation reaction for the synthesis of a cementitious material would be a promising approach. The present investigation deals with the aqueous carbonation of slaked lime, followed by hydrothermal synthesis of a cementitious material utilizing the carbonated lime, silica fume, and hydrated alumina. In this study, the aqueous carbonation reaction was performed under four different conditions. The TGA, FESEM, and XRD analysis of the carbonated product obtained from the four different reaction conditions was performed to evaluate the efficacy of the reaction conditions used for the production of the carbonated lime. Additionally, the performance of the cementitious material was verified analyzing the physical characteristics, mechanical property and setting time. Based on the results, it is demonstrated that the material produced by the hydrothermal method possesses the cementing ability. Additionally, it is revealed that the mortar prepared using the alternative cementitious material yields $33.8{\pm}1.3MPa$ compressive strength. Finally, a plausible reaction scheme has been proposed to explain the overall performances of the aqueous carbonation as well as the hydrothermal synthesis of the cementitious material.