• Title/Summary/Keyword: physical habitat model

Search Result 91, Processing Time 0.023 seconds

Physical Habitat Characteristics of the Endangered Macroinvertebrate Koreoleptoxis nodifila (Martens, 1886) (Mollusca, Gastropoda) in South Korea (한국산 멸종위기 무척추동물 염주알다슬기 (연체동물문, 복족강)의 물리적 서식처 특성 )

  • Jin-Young Kim;Ye ji Kim;Ah Reum Kim;In-Seong Yoo;Hwang Kim;Dongsoo Kong
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.145-155
    • /
    • 2022
  • Koreoleptoxis nodifila (Martens, 1886) is an endangered species only living in the central and north streams of South Korea. However, there is a lack of information on physical habitat characteristics of K. nodifila. We aimed to determine preference ranges for water depth, current velocity, streambed substrate of K. nodifila. The weibull model was used to estimate the habitat suitability based on distribution of individual abundance by physical factors. Optimal depth preferences ranged from 0.53~17.17 cm, current preferences ranged from 48.40~81.03 cm s-1 and substrate (𝜱m) preferences ranged from -4.36~ -2.26. Median values of central tendency were determined as follows: water depth 16.73 cm, current velocity 65.23 cm s-1, substrate -3.51. Mean values of central tendency were determined as follows: water depth 21.32 cm, current velocity 65.65 cm s-1, substrate -3.63. Mode values of central tendency were determined as follows: water depth 5.17 cm, current velocity 64.77 cm s-1, substrate -3.24. Based on the habitat suitability analysis, the microhabitat types of K. nodifila were determined as riffle and coarse-grained streambed.

Estimation of Instream Flow for Fish Habitat using Instream Flow Incremental Methodology(IFIM) for Major Tributaries in Han River Basin (유지유량 증분 방법론(IFIM)에 의한 한강수계 주요 지류에서의 어류서식 필요유량 산정)

  • Lee, Joo Heon;Jeong, Sang Man;Lee, Myung Ho;Lee, Yong Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.153-160
    • /
    • 2006
  • To recommend ecological flow for major tributaries in Han River basin, the Instream Flow Incremental Methodology (IFIM) have been applied. In particular physical habitat simulation using PHABSIM have been selected for microhabitat variables and QUAL2E model have been used to implement macrohabitat simulation. Habitat Suitability Criteria (HSC) for different life stages in accordance with different hydraulic variables (depth and velocity) have been presented by the field surveying data. We review IFIM procedures and discuss limitations of habitat simulation with specific reference to Han River basin. The results of this research can be used as reference flow for estimation of instream flow in Han River.

Assessment of Influx Efficiency at By-Pass Fishway Using Two-Dimensional Physical Habitat Simulation Model -Focused on Zacco Platypus- (인공하도식 어도에서 2차원 물리서식처 모형을 이용한 어류 유입 효율 평가 -피라미를 대상으로-)

  • Baek, Kyong Oh;Park, Ji Hyun;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.629-642
    • /
    • 2013
  • In this study, the efficiency of the by-pass fishway installed at Kangjung-Goryong Weir in Nakdong River was assessed by using River2D which is a two-dimensional physical habitat simulation model. The model was calibrated and validated through the measured water elevation. The assessment was performed according to flow condition such as flood, normal, and low flow. Especially the low flow condition was focused on because the target fish, Zacco Platypus, have moved frequently up and downstream at the spawning season from April to June. From simulation results, it can be deduced that the influx efficiency and the passage efficiency of the fishway in the low flow is higher than that in the flood and normal flow due to occurrence of proper velocity at fishway entrance.

Ecohydraulics - the significance and research trends (생태수리학의 의의와 전망)

  • Woo, Hyoseop
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.833-843
    • /
    • 2020
  • Ecohydraulics is a newly born discipline in the early 1990s by the interdisciplinary approach combined with aquatic ecology in one discipline and geomorphology, hydrology, and fluid hydrodynamics in another. Major areas of ecohydraulics can be delineated as habitat hydraulics (including environmental flow), vegetation hydraulics, eco-corridor hydraulics, eutrophication hydraulics, and ecological restoration hydraulics. Reviews of relevant international journals and literature reveal that ecohydraulics has remained in the limited areas of fish response, hydraulic modeling, and physical habitat response. It has not reached a truly interdisciplinary stage. Literature reviews in Korea reveal that only 3% of the total number of the papers listed in the Journal of KWRA during the last 24 years is related to ecohydraulics. It is about 20% of the total listed in the Journal of Ecology and Resilient Infrastructure. Most of those related to ecohydraulics in Korea concern vegetation hydraulics, habitat hydraulics, and ecological restoration hydraulics. In contrast, dynamic flow modeling areas, including turbulence, fauna motion simulation, and eutrophication hydraulics, are not found. Areas of further research in ecohydraulics in Korea may be specified as follows: 1) environmental flows adapted to the traits of the rivers in Korea, 2) development of the dynamic floodplain vegetation models (DFVM) to assess the changes from the white river to green river, 3) development of the eutrophication hydraulic model to predict the freshwater algal blooms, and 4) development of the models to evaluate the physical, chemical, and biological impacts of the stream restoration, decommissioning and removal of old weirs or small dams.

Physico-chemical Characteristics and In situ Fish Enclosure Bioassays on Wastewater Outflow in Abandoned Mine Watershed (폐광산 지역의 유출수에 대한 이.화학적 수질특성 및 Enclosure 어류 노출시험 평가)

  • An, Kwang-Guk;Bae, Dae-Yeul;Han, Jeong-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.218-231
    • /
    • 2012
  • The objectives of this study were to evaluate the physico-chemical water quality, trophic and tolerance guilds in the control ($C_o$) and impacted streams of the abandoned mine, along with the ecological health, using a multimetric health model and physical habitat conditions of Qualitative Habitat Evaluation Index (QHEI), during the period of three years, 2005~2007. Also, eco-toxicity ($EE_t$) enclosure tests were conducted to examine the toxic effects on the outflows from the mine wastewater, using the sentinel species of Rhynchocypris oxycephalus, and we compared the biological responses of the control ($C_o$) and treatment (T) to the effluents through a Necropybased Health Assessment Index ($N_b$-HAI). Tissue impact analysis of the spleen, kidney, gill, liver, eyes, and fins were conducted in the controlled enclosure experiments (10 individuals). According to the comparisons of the control ($C_o$) vs. the treatment (T) in physicochemical water quality, outflows from the abandoned mine resulted in low pH of 3.2, strong acid wastewater, high ionic concentrations, based on an electrical conductivity, and high total dissolved solid (TDS). Physical habitat assessments, based on Qualitative Habitat Evaluation Index (QHEI) did not show any statistical differences (p>0.05) in the sampling sites, whereas, the $M_m$-EH model values in a multimetric ecological health ($M_m$-EH) model of the Index of Biological Integrity (IBI), using fish assemblages, were 16~20 (fair condition) in the control and all zero (0, poor condition) in the impacted sites of mine wastewater. In addition, in enclosure eco-toxicity ($EE_t$) tests, the model values of $N_b$-HAI ranged between 0 and 3 in the controls during the three years, indicating an excellent~good condition (Ex~G), and were >100 (range: 100~137) in the impacted sites, which indicates a poor condition (P). Under the circumstances, organ tissues, such as the liver, kidney, and gills were largely impaired, so that efficient water quality managements are required in the outflow area of the abandoned mine watershed.

Stream Health Assessments on Tributaries of Lake Paldang Using Index of Biological Integrity for Fish Community and Physical Habitat Parameters (어류 모델 메트릭과 물리적 서식지 변수를 이용한 팔당호 유입하천 하류부의 하천건강성 평가)

  • Choi, Myung-Jae;Park, Hae-Kyung;Lee, Jang-Ho;Yun, Seok-Hwan
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.280-289
    • /
    • 2009
  • The fish communities and physical habitat conditions of fifteen tributaries of Lake Paldang in spring and autumn, 2008 were surveyed to evaluate the ecological health of the streams. The total 2,746 individuals were collected belonging to 11 families 31 genera 40 species. Two new species (Cottus koreanus, Gnathopogon strigaus) that have never been reported as yet in Lake Paldang watershed were found for the first time. The most dominant species in the tributaries was Acheilognathus yamatsutae (19.9%) which is Korean endemic species. Ecological health evaluation of fifteen tributaries using index of biological integrity (IBI) model for fish community and qualitative habitat evaluation index (QHEI) was performed. According th the IBI analysis, four streams (Siwoo-Stream, Jojong-Stream, Moonho-Stream and Mugab-Stream) were evaluated as "good" condition (B grade), Woosan-Stream were "poor" condition (D grade) and others were "fair" condition (C grade). Qualitative habitat evaluation index values of the four streams were the grade "II" indicating "good" condition and those of eleven streams were the grade "III", indicating 'fair' condition. On the whole, dataset of IBI and QHEI showed that ecological health of Jojong-Stream has been well maintained compared to other tributaries of Lake Paldang.

Study on physical habitat suitability of Gobiobotia naktongensis in Naeseong Stream according to change of bed grain size (내성천 하상 입경 변화에 따른 흰수마자의 물리 서식 적합도 분석)

  • Lee, Dong Yeol;Park, Jae Hyun;Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.553-562
    • /
    • 2023
  • The Gobiobotia naktongensis is a species endemic to Korea, and it has recently been designated as a class I endangered species of freshwater fish. Naeseong Stream, one of the tributaries of the Nakdong River, where the Gobiobotia naktongensis was first discovered, provided an optimal habitat for the Gobiobotia naktongensis in the past with fine sand beds and riffle. Currently, due to the construction of Yeongju Dam and the excessive dredging of river channels by the local government, the riverbed armoring in the downstream area of the dam is undergoing rapid changes, and as a result, the habitat environment of the Gobiobotia naktongensis is deteriorating. In this study, the variations of the habitat suitability of the Gobiobotia naktongensis due to the change in the riverbed grain size of the Naeseong Stream were analyzed based on the WUA (weight usable area) using the physical habitat model, River2D. The study domain is the reach from Seoktap Bridge to Hoeryong Bridge downstream of Yeongju Dam. The change in riverbed grain size was analyzed using D50 acquired in 2010 and 2020, respectively. The substrate grain size of Naeseong Stream in 2020 was thicker than that in 2010, and the riverbed coarsening phenomenon was evident overall. As a result of the River2D analysis, the area in which the Gobiobotia naktongensis could inhabit was only about 0.75% in 2010 compared to the entire area of the flow, and even this decreased to 0.55% in 2020 due to riverbed armoring.

Eco-Hydrologic Assessment of Maintenance Water Supply on Oncheon Stream (온천천 유지용수 공급에 따른 생태수문환경 변화분석)

  • Jang, Ju-Hyoung;Kim, Sang-Dan;Sung, Ki-June;Shin, Hyun-Suk
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.973-983
    • /
    • 2007
  • The eco-hydrologic effects of maintenance water supply on Oncheon stream are studied using hydrologic, hydraulic and ecologic models. SWMM (Storm Water Management Model) is used for long-term simulation of runoff quantity and water quality from Oncheon stream watershed. Using the output hydrologic variables from SWMM, HEC-RAS (River Analysis System) is then used to simulate the hydraulics of water flow through Oncheon stream channels. Such hydrologic, hydraulic and water quality output variables from SWMM and HEC-RAS are served as input data to execute PHABSIM (Physical Habitat Simulation) for the purpose of predicting the micro-habitat conditions in rivers as a function of stream flow and the relative suitability of those conditions to aquatic life. It is observed from the PHABSIM results that the weighted usable area for target fishes has the maximum value at $2m^3/s$ of instream flow. However, mid and down stream areas that have concrete river bed and covered region are unsuitable for fish habitat regardless of instream flow increment. The simulation results indicate that the simple maintenance water supply is limited in its effect to improve the ecological environment in Oncheon stream. Therefore, it is imperative to improve water quality and to recover habitat conditions simultaneously.

Ecosystem Health Assessments of Changwon Stream as a Preliminary Diagnosis for Aquatic Ecosystem Restoration

  • Han, Jung-Ho;Bae, Dae-Yeul;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.527-536
    • /
    • 2007
  • In this study, we applied 10-metric health assessment model, based on the Index of Biological Integrity (IBI) during 2006 in the Changwon Stream, which is located in the Changwon city, Gyeongnam province, S. Korea, and then compared with water quality data. The Index of Biological Integrity (IBI) in the Changwon Stream varied from 18 to 38 in the watershed depending on the sampling location and averaged 30.3 (n=6) during the study. Analysis of tolerance guilds showed that the proportion of sensitive species was 13%, but tolerant and intermediate species were 34% and 53%, respectively. Qualitative Habitat Evaluation Index (QHEI) averaged 43.3 (range: 65-104, n=6) indicating non-supporting condition, based on the criteria of U.S. EPA (1993). Values of QHEI showed a typical longitudinal decreases from the headwater reach to the downstream location, except for Site 1 with a low QHEI value by artificial habitat by concrete construction. Minimum QHEI was found in Site 4 where fish diversity was minimal. Conductivity increased continuously along the gradients and especially showed abrupt increases in the downstream sites along with turbidity. Stream ecosystem health of IBI matched to the values of QHEI except for S6. Low IBI values in the sites 4 and 5 was considered to be a result of combined effects of chemical pollutions and habitat degradations. Our results support the hypotheses of Plafkin et ai. (1989) that physical habitat quality directly influences the trophic structure and species richness, and is closely associated with IBI values.

Estimation of River Ecological Flow in the Downstream Section of Seomjingang Dam (섬진강 댐 하류 구간에서의 하천 생태유량 산정)

  • Bae, Jeonga;Lee, Chanjoo;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.2
    • /
    • pp.1-13
    • /
    • 2021
  • It is very important to secure sufficient river maintenance flow for the ecosystem, since the ecosystem in the downstream section of the dam is greatly affected by the stream maintenance flow from the dam. However, the amount of discharge from the Seomjingang Dam is decreasing year by year, this study estimated the ecological flow required for the downstream section of the Seomjingang Dam, which is known as the habitat of the endangered Acheilognathus somjinensis, in order to secure the river flow of the Seomjingang Dam. For this purpose, the proper discharge was calculated using the PHABSIM model, which is a hydrological survey and physical habitat simulation method, and the proper discharge of other fish species were also comprehensively reviewed. As a result of this study, the current river maintenance flow at the Seomjingang Dam partially satisfies the ecological maintenance flow including the Acheilognathus somjinensis in the downstream section of the Seomjingang Dam. However, this is recognized as the minimum discharge to maintain the ecology in the downstream section of the Seomjingang Dam, and it would be more desirable to secure larger river maintenance flow than this. This study can contribute the determination of the river maintenance flow of the Seomjingang Dam by proposing the river maintenance flow considering the fish habitat environment in the river.