• Title/Summary/Keyword: physical and electrical properties

Search Result 940, Processing Time 0.032 seconds

Decision of Available Soil Depth Based on Physical and Hydraulic Properties of Soils for Landscape Vegetation in Incheon International Airport

  • Jung, Yeong-Sang;Lee, Hyun-Il;Jung, Mun-Ho;Lee, Jeong-Ho;Kim, Jeong-Tae;Yang, Jae E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.522-527
    • /
    • 2015
  • Decision of available soil depth based on soil physical and hydraulic properties for the $3^{rd}$ Landscape Vegetation Project in the Incheon International Airport was attempted. The soil samples were collected from the 8 sites at different depths, 0-20 and 20-60cm, for the three project fields, A, B, and C area. Physical and chemical properties including particle size distribution, organic matter content and electrical conductivity were analyzed. Hydrological properties including bulk density and water holding capacity at different water potential, -6 kPa, -10 kPa, -33 kPa, and -1500 kPa were calculated by SPAW model of Saxton and Rawls (2006), and air entry value was calculated by Campbell model (1985). Based on physical and hydrological limitation, feasibility and design criteria of soil depth for vegetation and landfill were recommended. Since the soil salinity of the soil in area A area was $19.18dS\;m^{-1}$ in top soil and $22.27dS\;m^{-1}$ in deep soil, respectively, landscape vegetation without amendment would not be possible on this area. Available soil depth required for vegetation was 2.51 m that would secure root zone water holding capacity, capillary fringe, and porosity. Available soil depth required for landscape vegetation of the B area soil was 1.51 m including capillary fringe 0.14 m and available depth for 10% porosity 1.35 m. The soils in this area were feasible for landscape vegetation. The soil in area C was feasible for bottom fill purpose only due to low water holding capacity.

Theoretical Prediction of AC Characteristics of Low Pressure Lamps (저압 방전등 교류 접등 특성의 이론적 예측)

  • 지철근;장우진;여인선;이진우
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.470-476
    • /
    • 1989
  • In order to develop a mathematical model which can predict the operating voltage and current of a discharge lamp, the properties and the physical phenomena of a low pressure gas discharge are investigated. Fluorescent lamp which uses a low pressure mercury-argon gas discharge is used in the model development. In a low pressure mercur-argon gas discharge, the continuity equation for each excited atom and electron, and the electron energy balance equation can predict the physical quantities of discharge. By coupling these equations and the circuit equation, the electrical characteristics of the discharge lamp can be predicted. To verify the validity of the suggested model, we calculated the voltage and current of a fluorescent lamp operating with inductor ballast for source frequency of 5KHz, 8KHz, 10KHz, and 13KHz. The results show good agreements in wave forms between the measured voltage and current, and the difference between the measured and calculated one is less than 5%.

  • PDF

Electrical Properties of SBT Thin Films after Etching in Cl$_2$/Ar Inductively Coupled Plasma (Ar/Cl$_2$ 유도결합플라츠마 식각 후 SBT 박막의 전기적 특성)

  • 이철인;권동표;깅창일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.58-61
    • /
    • 2002
  • SBT thin films were etched at different content of Cl$_2$in Cl$_2$/Ar plasma. We obtained the maximum etch rate of 883 ${\AA}$/min at Cl$_2$(20%)/Ar(80%). As Cl$_2$ gas increased in Cl$_2$/Ar plasma, the etch rate decreased. The maximum etch rate may be explained by variation of volume density for Cl atoms and by the concurrence of two etching mechanisms such as physical sputtering and chemical reaction with formation of low-volatile products, which can be desorbed only by ion bombardment. The variation of volume density for Cl, F and Ar atoms and ion current density were measured by the optical emission spectroscopy and Langmuir probe. To evaluate the physical damage due to plasma, X-ray diffraction and atomic force microscopy analysis carried out. After etching process, P-E hysteresis loops were measured by ferroelectric workstation.

  • PDF

Effect of Sintering Temperature on the Dielectric and Piezoelectric Properties of (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics (소성 온도가 (Na,K,Li)(Nb,Sb,Ta)O3 세라믹스의 유전 및 압전 특성에 미치는 영향)

  • Kim, You-Seok;Yoo, Ju-Hyun;Hong, Jae-Il;Lee, Jie-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.806-809
    • /
    • 2013
  • In this study, $(Na_{0.525}K_{0.443}Li_{0.037})(Nb_{0.883}Sb_{0.08}Ta_{0.037})O_3+0.10\;wt%Bi_2O_3+0.35\;wt%B_2O_3$ ceramics were prepared by conventional soild-state sintering process. The specimens were sintered at temperature range from $1,060^{\circ}C$ to $1,100^{\circ}C$. XRD (X-ray diffractron), SEM (scanning electron microscope) were used to analyze the crystal structure and microstructural sproperties of specimens. And also, $T_{O-T}$, TC were observed by the mesurement of temperature dependence of dielectric constant. Excellect physical properties of the piezoelectric constant $d_{33}$= 170 pC/N, electromechanical coupling factor kp= 0.312, Tc= $315^{\circ}C$ were obtained, respectively, from the specimen sintered at $1,080^{\circ}C$.

Electrical Breakdown Properties of Insulating Oils for oil-immersed transformer (유입변압기용 절연유의 절연파괴특성)

  • Lee, I.S.;Shin, H.T.;Lee, J.P.;Lee, S.W.;Hong, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.605-608
    • /
    • 2001
  • With the intention of investigating the breakdown properties of oil-immersed transformer oils in temperature range of $20\sim100[^{\circ}C]$, we are made researches AC breakdown in the gap of $500\sim2500[{\mu}m]$. The classification for the physical properties of oil for oil-immersed transformer by FTIR and H-NMR experiments was confirmed to type of mineral oils. As the dependance of breakdown properties due to electrode gap length variation, breakdown voltage was found increasing according to the increase of gap, while dielectric strength was decreasing. As a result the characteristics for AC breakdown, It goes to prove that the breakdown voltage was increased to $90[^{\circ}C]$ but decreased over $90[^{\circ}C]$ in the temperature range. Also, breakdown voltage was found increasing in the increase of gap and the rising of temperature according to Weibull distribution.

  • PDF

Development of Charcoal Containing Paper for Packaging Grades(II) - Electrical and Physical Properties - (숯을 활용한 포장재 개발에 관한 연구(제2보) -전기적, 물리적 성질 -)

  • Seo, Young-Bum;Jeon, Yang;Lee, Hwa-Hyung;Jung, Tae-Young;Lee, Jong-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.2
    • /
    • pp.52-57
    • /
    • 2003
  • The charcoal is known to have gas adsorption capability and electrical properties. Some practical applications of carbon materials for the purpose of limited electrical conduction were made in these days. In this paper, we applied the several different kinds of charcoal to the papers in three different ways to investigate if charcoal application method affects its electrical conduction capability. Wet end addition, making multiply, and coating method were tested. The area electrical resistivity of charcoal containing paper was measured. The strength properties of charcoal containing paper were compared to those of the control, which had no charcoal in it. Experimental results showed that manufacturing conditions of the charcoal itself changed its electrical and strength properties of charcoal containing paper. The electrical properties of charcoal containing paper can be used for the removal of electrostatic problem in packaging system. The strength property of the charcoal containing paper should be kept, at least, over the minimum requirement for the packaging system. By using coating method on paper or making multiply, strength loss of paper by inclusion of charcoal could be overcome.

Influence of Aminized Graphite Nanosheets on the Physical Properties of PMMA-based Nanocomposites

  • Kim, Ki-Seok;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.196-200
    • /
    • 2011
  • In this work, poly(methyl methacrylate) (PMMA) was grafted onto amine treated graphite nanosheets ($NH_2$-GNs) and the surface characteristics and physical properties of the $NH_2$-GNs-g-PMMA films were investigated. The graft reaction of $NH_2$-GNs and PMMA was confirmed from the shift of the $N_{1S}$ peak, including amine oxygen and amide oxygen, by X-ray photoelectron spectroscopy (XPS). The surface characteristics of the $NH_2$-GNs-g-PMMA films were measured as a function of the $NH_2$-GN content using the contact angle method. It was revealed that the specific component of the surface free energy (${\gamma}s$) of the films was slightly increased as the $NH_2$-GN content increased. Also, the thermal and mechanical properties of the $NH_2$-GNs-g-PMMA films were enhanced with the addition of $NH_2$-GNs. This can be attributed to the chemical bonding caused by the graft reaction between the $NH_2$-GNs and the PMMA matrix.

2D transition-metal dichalcogenide (WSe2) doping methods for hydrochloric acid

  • Nam, Hyo-Jik;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.291.2-291.2
    • /
    • 2016
  • 3D semiconductor material of silicon that is used throughout the semiconductor industry currently faces a physical limitation of the development of semiconductor process technology. The research into the next generation of nano-semiconductor materials such as semiconductor properties superior to replace silicon in order to overcome the physical limitations, such as the 2-dimensional graphene material in 2D transition-metal dichalcogenide (TMD) has been researched. In particular, 2D TMD doping without severely damage of crystal structure is required different conventional methods such as ion implantation in 3D semiconductor device. Here, we study a p-type doping technique on tungsten diselenide (WSe2) for p-channel 2D transistors by adjusting the concentration of hydrochloric acid through Raman spectroscopy and electrical/optical measurements. Where the performance parameters of WSe2 - based electronic device can be properly designed or optimized. (on currents increasing and threshold voltage positive shift.) We expect that our p-doping method will make it possible to successfully integrate future layered semiconductor devices.

  • PDF

Geostatistical Approach to Integrated Modeling of Iron Mine for Evaluation of Ore Body (철광산의 광체 평가를 위한 지구통계학적 복합 모델링)

  • Ahn, Taegyu;Oh, Seokhoon;Kim, Kiyeon;Suh, Baeksoo
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.177-189
    • /
    • 2012
  • Evaluation of three-dimensional ore body modeling has been performed by applying the geostatistical integration technique to multiple geophysical (electrical resistivity, MT) and geological (borehole data, physical properties of core) information. It was available to analyze the resistivity range in borehole and other area through multiple geophysical data. A correlation between resistivity and density from physical properties test of core was also analyzed. In the case study results, the resistivity value of ore body is decreased contrast to increase of the density, which seems to be related to a reason that the ore body (magnetite) includes heavy conductive component (Fe) in itself. Based on the lab test of physical properties in iron mine region, various geophysical, geological and borehole data were used to provide ore body modeling, that is electrical resistivity, MT, physical properties data, borehole data and grade data obtained from borehole data. Of the various geostatistical techniques for the integrated data analysis, in this study, the SGS (sequential Gaussian simulation) method was applied to describe the varying non-homogeneity depending on region through the realization that maintains the mean and variance. With the geostatistical simulation results of geophysical, geological and grade data, the location of residual ore body and ore body which is previously reported was confirmed. In addition, another highly probable region of iron ore bodies was estimated deeper depth in study area through integrated modeling.

Electrical Measurement Method On Elastic Coefficient of The Solid Electric Materials (고체전기재물의 장성계수에 관한 전기적인 측정법)

  • Yong-Hyun Paik
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.10
    • /
    • pp.341-347
    • /
    • 1983
  • The purpose of this paper is to develope the appratus for measuring the physical properties of the solid materials electrically, which are now well-known materials for industrial products. Previously Tensilon was used to measure the coefficient of the elasticity of solid, which the treatment of specimens and the measurement were complicated. The special feature in this paper is to measure various materials, as they stand, minutely in a short time by uning the resonance of solid electrically.