• Title/Summary/Keyword: phylogenetic analyses

Search Result 633, Processing Time 0.024 seconds

Genetic diversity analysis of Thai indigenous pig population using microsatellite markers

  • Charoensook, Rangsun;Gatphayak, Kesinee;Brenig, Bertram;Knorr, Christoph
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1491-1500
    • /
    • 2019
  • Objective: European pigs have been imported to improve the economically important traits of Thai pigs by crossbreeding and was finally completely replaced. Currently Thai indigenous pigs are particularly kept in a small population. Therefore, indigenous pigs risk losing their genetic diversity and identity. Thus, this study was conducted to perform large-scale genetic diversity and phylogenetic analyses on the many pig breeds available in Thailand. Methods: Genetic diversity and phylogenetics analyses of 222 pigs belonging to Thai native pigs (TNP), Thai wild boars (TWB), European commercial pigs, commercial crossbred pigs, and Chinese indigenous pigs were investigated by genotyping using 26 microsatellite markers. Results: The results showed that Thai pig populations had a high genetic diversity with mean total and effective ($N_e$) number of alleles of 14.59 and 3.71, respectively, and expected heterozygosity ($H_e$) across loci (0.710). The polymorphic information content per locus ranged between 0.651 and 0.914 leading to an average value above all loci of 0.789, and private alleles were found in six populations. The higher $H_e$ compared to observed heterozygosity ($H_o$) in TNP, TWB, and the commercial pigs indicated some inbreeding within a population. The Nei's genetic distance, mean $F_{ST}$ estimates, neighbour-joining tree of populations and individual, as well as multidimensional analysis indicated close genetic relationship between Thai indigenous pigs and some Chinese pigs, and they are distinctly different from European pigs. Conclusion: Our study reveals a close genetic relationship between TNP and Chinese pigs. The genetic introgression from European breeds is found in some TNP populations, and signs of genetic erosion are shown. Private alleles found in this study should be taken into consideration for the breeding program. The genetic information from this study will be a benefit for both conservation and utilization of Thai pig genetic resources.

Development of EST-SSRs and Assessment of Genetic Diversity in Germplasm of the Finger Millet, Eleusine coracana (L.) Gaertn.

  • Wang, Xiaohan;Lee, Myung Chul;Choi, Yu-Mi;Kim, Seong-Hoon;Han, Seahee;Desta, Kebede Taye;Yoon, Hye-myeong;Lee, Yoonjung;Oh, Miae;Yi, Jung Yoon;Shin, Myoung-Jae;Kim, Kyung-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.443-451
    • /
    • 2021
  • Finger millet (Eleusine coracana) is widely cultivated in tropical regions worldwide owing to its high nutritional value. Finger millet is more tolerant against biotic and abiotic stresses such as pests, drought, and salt than other millet crops; therefore, it was proposed as a candidate crop to adapt to climate change in Korea. In 2019, we used expressed sequence tag simple sequence repeat (EST-SSR) markers to evaluate the genetic diversity and structure of 102 finger millet accessions from two geographical regions (Africa and South Asia) to identify appropriate accessions and enhance crop diversity in Korea. In total, 40 primers produced 116 alleles, ranging in size from 135 to 457 bp, with a mean polymorphism information content (PIC) of 0.18225. Polymorphism was detected among the 40 primers, and 13 primers were found to have PIC values > 0.3. Principal coordinate and phylogenetic analyses, based on the combined data of both markers, grouped the finger millet accessions according to their respective collection areas.Therefore, the 102 accessions were classified into two groups, one from Asia and the other from Africa. We have conducted an in-depth study on the finger millet landrace pedigree. By sorting out and using the molecular characteristics of each pedigree, it will be useful for the management and accession identification of the plant resource. The novel SSR markers developed in this study will aid in future genetic analyses of E. coracana.

Comparative genetic analyses of Korean bat coronaviruses with SARS-CoV and the newly emerged SARS-CoV-2

  • Na, Eun-Jee;Lee, Sook-Young;Kim, Hak Jun;Oem, Jae-Ku
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.12.1-12.11
    • /
    • 2021
  • Background: Bats have been considered natural reservoirs for several pathogenic human coronaviruses (CoVs) in the last two decades. Recently, a bat CoV was detected in the Republic of Korea; its entire genome was sequenced and reported to be genetically similar to that of the severe acute respiratory syndrome CoV (SARS-CoV). Objectives: The objective of this study was to compare the genetic sequences of SARS-CoV, SARS-CoV-2, and the two Korean bat CoV strains 16BO133 and B15-21, to estimate the likelihood of an interaction between the Korean bat CoVs and the human angiotensin-converting enzyme 2 (ACE2) receptor. Methods: The phylogenetic analysis was conducted with the maximum-likelihood (ML) method using MEGA 7 software. The Korean bat CoVs receptor binding domain (RBD) of the spike protein was analyzed by comparative homology modeling using the SWISS-MODEL server. The binding energies of the complexes were calculated using PRODIGY and MM/GBGA. Results: Phylogenetic analyses of the entire RNA-dependent RNA polymerase, spike regions, and the complete genome revealed that the Korean CoVs, along with SARS-CoV and SARS-CoV-2, belong to the subgenus Sarbecovirus, within BetaCoVs. However, the two Korean CoVs were distinct from SARS-CoV-2. Specifically, the spike gene of the Korean CoVs, which is involved in host infection, differed from that of SARS-CoV-2, showing only 66.8%-67.0% nucleotide homology and presented deletions within the RBD, particularly within regions critical for cross-species transmission and that mediate interaction with ACE2. Binding free energy calculation revealed that the binding affinity of Korean bat CoV RBD to hACE2 was drastically lower than that of SARS-CoV and SARS-CoV-2. Conclusions: These results suggest that Korean bat CoVs are unlikely to bind to the human ACE2 receptor.

Morphological and Phylogenetic Analyses Reveal a New Species of Genus Monochaetia Belonging to the Family Sporocadaceae in Korea

  • Seong-Keun Lim;Kallol Das;Soo-Min Hong;Sang Jae Suh;Seung-Yeol Lee;Hee-Young Jung
    • Mycobiology
    • /
    • v.51 no.2
    • /
    • pp.87-93
    • /
    • 2023
  • The fungal strain belonging to the genus Monochaetia of the family Sporocadaceae was isolated from hairy long-horned toad beetle (Moechotypa diphysis) during the screening of microfungi associated with insects from Gangwon Province, Korea. The strain KNUF-6L2F produced white, light brown to dirty black surface, and olivaceous green colonies with the higher growth, while the closest strain M. ilicis KUMCC 15-0520T were light brown to brown, and M. schimae SAUCC 212201T light brown to brown toward center. The strain KNUF-6L2F produced shorter (5.7-14.0 ㎛) apical appendages than M. ilicis (6.0-24.0 ㎛), but similar to M. schimae (7.0-12.5 ㎛). Three median cells of KNUF-6L2F were light brown to olivaceous green, whereas brown and olivaceous cells were observed from M. ilicis and M. schimae, respectively. And the strain KNUF-6L2F produced larger conidiogenous cells than M. ilicis and M. schimae. Additionally, phylogenetic analyses based on molecular datasets of internal transcribed spacer (ITS) regions, translation elongation factor 1-alpha (TEF1α), and β-tubulin (TUB2) genes corroborated the strain's originality. Thus, the strain is different from other known Monochaetia species, according to molecular phylogeny and morophology, hence we suggested the new species Monochaetia mediana sp. nov. and provided a descriptive illustration.

A Revision of the Phylogeny of Helicotylenchus Steiner, 1945 (Tylenchida: Hoplolaimidae) as Inferred from Ribosomal and Mitochondrial DNA

  • Abraham Okki, Mwamula;Oh-Gyeong Kwon;Chanki Kwon;Yi Seul Kim;Young Ho Kim;Dong Woon Lee
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.171-191
    • /
    • 2024
  • Identification of Helicotylenchus species is very challenging due to phenotypic plasticity and existence of cryptic species complexes. Recently, the use of rDNA barcodes has proven to be useful for identification of Helicotylenchus. Molecular markers are a quick diagnostic tool and are crucial for discriminating related species and resolving cryptic species complexes within this speciose genus. However, DNA barcoding is not an error-free approach. The public databases appear to be marred by incorrect sequences, arising from sequencing errors, mislabeling, and misidentifications. Herein, we provide a comprehensive analysis of the newly obtained, and published DNA sequences of Helicotylenchus, revealing the potential faults in the available DNA barcodes. A total of 97 sequences (25 nearly full-length 18S-rRNA, 12 partial 28S-rRNA, 16 partial internal transcribed spacer [ITS]-rRNA, and 44 partial cytochrome c oxidase subunit I [COI] gene sequences) were newly obtained in the present study. Phylogenetic relationships between species are given as inferred from the analyses of 103 sequences of 18S-rRNA, 469 sequences of 28S-rRNA, 183 sequences of ITS-rRNA, and 63 sequences of COI. Remarks on suggested corrections of published accessions in GenBank database are given. Additionally, COI gene sequences of H. dihystera, H. asiaticus and the contentious H. microlobus are provided herein for the first time. Similar to rDNA gene analyses, the COI sequences support the genetic distinctness and validity of H. microlobus. DNA barcodes from type material are needed for resolving the taxonomic status of the unresolved taxonomic groups within the genus.

Two New Records of Peyssonnelia Species and Sonderophycus cauliferus Comb. Nov. within the Family Peyssonneliaceae (Peyssonneliales) from Korea

  • Jeong, So Young;Bustamante, Danilo E.;Lee, Jin Gyo;Won, Boo Yeon;Kim, Seung Hee;Cho, Tae Oh
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.3
    • /
    • pp.345-353
    • /
    • 2017
  • Detailed morphological studies and molecular analyses based on plastid-encoded rbcL gene sequences were undertaken on Peyssonnelia species, a poorly known genus from Korea. We report new records for the Korean coast, Peyssonnelia harveyana and P. rumoiana. Peyssonnelia harveyana is chiefly characterized by P. rubra-type anatomy, closely packed perithallial filaments in firm matrix, hypothallial filaments arranged in parallel rows, thalli with appressed margins, hypobasal calcification, and unicellular rhizoids. Peyssonnelia rumoiana is principally characterized by two vegetative features, hypothallial filaments arranged in a polyflabellate layer, and perithallial filaments arising from the whole upper surface of each hypothallial cell (Peyssonnelia rubra-type anatomy). Our rbcL analyses revealed that P. harveynana and P. rumoiana were placed within a clade of Peyssonnelia. We also propose the new combination, Sonderophycus cauliferus comb. nov., for previous Peyssonnelia caulifera. Phylogenetic analyses revealed that our S. cauliferus was placed within a clade of Sonderophycus.

Endoplura jejuensis sp. nov. and Endoplura koreana sp. nov. (Ralfsiales, Phaeophyceae) from Korea based on molecular and morphological analyses

  • Oteng'o, Antony Otinga;Cho, Tae Oh;Won, Boo Yeon
    • ALGAE
    • /
    • v.36 no.3
    • /
    • pp.155-163
    • /
    • 2021
  • The crustose brown algal genus Endoplura has been known as a monotypic genus characterized by its intercalary plurangial reproductive structures composed of 2-4 separate parallel filaments terminated by 2-5 sterile cells and by containing several to many chloroplasts per cell. In this study, Endoplura jejuensis sp. nov. and E. koreana sp. nov. from Korea are newly described based on molecular and morphological analyses. Our phylogenetic analyses of the rbcL gene reveal that E. jejuensis sp. nov. and E. koreana sp. nov. are placed in the same clade with "E. aurea" from Japan with a strong bootstrap supporting value. E. jejuensis is characterized by small and light to dark brown crustose thalli of less than 1 cm diameter, tufts of hairs arising from the basal disc, plurangia composed mostly of two separate parallel reproductive filaments terminated by 2-4 sterile cells, and sessile unangia each with a single paraphysis. E. koreana is distinguished by olive or yellowish-brown crustose thalli of up to 3 cm diameter, tufts of hairs arising from the basal disc, and apical parts of erect filaments, plurangia with 2-5 separate reproductive filaments terminated by 2-8 sterile cells, and sessile unangia with 1-2 paraphyses. Our studies also show that "E. aurea" specimens from Japan may be recognized to be a different species from other Endoplura species.

Evolutionary Analyses of SSII-1 Gene Provides Insight into Its Domestication Signatures in Collected Rice Accessions

  • Thant Zin Maung;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.215-215
    • /
    • 2022
  • Starch synthase proteins (SSI, SSII and SSIII) in rice are mainly involved in amylopectin synthesis mediating its chain elongation, and the functional loss of SSII can increase amylose accumulation through decreasing of amylopectin chain proportions. For purposes of identifying functional haplotypes and evolutionary analyses of this gene, SSII-1, we investigated 374 rice accessions belonging to different subgroups of origins. We subsequently performed bioinformatic analyses on their variations through haplotyping, resequencing and structuring based on different classified populations. Haplotyping of cultivated rice accessions using genetic variations within SSII-1 genomic region of chromosome 10 revealed a total of 8 haplotypes, representing 6 functional haplotypes by 4 non-synonymous SNPs of three different exons (1, 4 and 10), which effect on protein structure. Higher nucleotide diversity value was found in wild group (0.0055) compared to any of cultivated subpopulations, of which aus showed the most reduction of diversity value (0.0003). Tajima's D analysis exhibits the most Tajima's D value only in admixture group (0.3600) which appears to be the cause of a sudden population contraction by rare alleles scarcity. A clear separation of some wild accessions from the admixed cultivated subpopulations was observed in PCA and phylogenetic analysis. Similar admixed pattern of population structure was estimated with an increased K values of 2 to 8 where genetic components of almost all cultivated subpopulations were shared with the wild which can also be subsequently estimated by very low FST-values by -0.011 (wild-aromatic) and -0.003 (wild-admixture).

  • PDF

Functional Haplotypes and Evolutionary Analyses of SBE1 in Collected Rice Germplasm

  • Thant Zin Maung;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.216-216
    • /
    • 2022
  • The starch-branching enzymes (BEs) are responsible for synthesizing the amylopectin, which plays an important role in determining the structural and physical properties of starch granules. BE has two differently functioning isoforms (BEI and BEIIa/b) based on their difference in the chain-length pattern by the degree of polymerization (DP), which mainly contributes to the amylopectin chain length distribution in starch biosynthesis. In this study, we investigated functional haplotypes and evolutionary analyses of SBE1 in 374 rice accessions (320 Korean bred and 54 wild). The analyses were performed based on the classified subpopulations. Haplotype analysis generates a total of 8 haplotypes, of which only four haplotypes were functional carrying four functional SNPs in four different exons of SBE1 on chromosome 6. Nucleotide diversity analysis showed a highest pi-value in aromatic group (0.0029), while the lowest diversity value was in temperate japonica (0.0002), indicating the signal of this gene evolution origin. Different directional selections could be estimated by negative Tajima's D value of temperate japonica (-1.1285) and positive Tajima's D value of tropical japonica (0.9456), where the selective sweeps were undergone by both positive purifying and balancing selections. Phylogenetic analysis indicates a closer relationship of the wild with most of the cultivated subgroups indicating a common ancestor for SBE1 gene. FST-values indicate distant genetic relationships of temperate japonica from all other classified groups. PCA and population structure analysis show an admixed structure of wild and cultivated subpopulations in some proportions.

  • PDF

Characterization of PUL Haplotypes and Its Evolutionary Analyses in Korean Rice Accessions

  • Thant Zin Maung;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.217-217
    • /
    • 2022
  • Pullulanase (PUL), a debranching enzyme, has been utilized in hydrolyzing the a-1,6 glucosidic linkages in starch, amylopectin, pullulan, as well as related oligosaccharides. It has also been indicated that PUL is a novel indicator of inherent RS (Resistant Starch) formation in rice. In this study, we performed haplotype analysis on 320 bred rice accessions, and additional 54 wild accessions were added to study genetic diversity along with other population-based analyses of the PUL gene. Through these investigations, we summarized a total of 10 functional (non-synonymous) SNPs from 7 different exons on chromosome 4. There were 10 haplotypes, of which only six haplotypes were functional, implicating different subpopulations. Diversity reduction was noticed in temperate japonica (0.0005) compared to the highest one (aus, 0.0154), illustrating their higher genetic differentiation by FST-value (0.926). The highest Tajima^ D value was observed in indica (3.6613), indicating PUL gene domestication signature under balancing selection, while the lowest Tajima's D value was found in temperate japonica (-2.2191) which might have undergone under positive selection and purified due to the excess of rare alleles. PCA, population structure, and phylogenetic analyses provide information on the genetic relatedness between and or among the cultivated subpopulations and the wild based on PUL genomic region.

  • PDF