• Title/Summary/Keyword: phyllochron

Search Result 3, Processing Time 0.014 seconds

Effects of Temperature on Leaf Emergence Rates and Phyllochron of Naked and Malting Barley (온도가 쌀보리와 맥주보리의 출엽속도와 출엽간격에 미치는 영향)

  • Kang, Young-Kil;Ko, Koan-Su;Kang, Bong-Kyoon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.5
    • /
    • pp.449-457
    • /
    • 1993
  • Three naked and three malting barley cultivars were grown at constant temperatures of 4, 8, 12, 16, 20, 24 and 28$^{\circ}C$, and day/night temperatures of 6/2, 10/6, 14/10, 18/14, 22/18, 26/22 and 30/26$^{\circ}C$ through the fourth leaf stage in growth chambers to determine the effects of the temperature on leaf emergence rate and phyllochron in naked and malting barley seedlings. The number of leaves per main stem was recorded daily from the first leaf stage to the fourth. At a given temperature, the emergence of new leaves was a linear function of time for all cultivars. There were no great differences in leaf emergence rate and phyllochron between constant and variable day/night temperature regimes except at 28$^{\circ}C$. Leaf emergence rate and phyllochron significantly differed among cultivars and among mean temperatures within cultivars. For all cultivars, leaf emergence rate per day increased parabolically with increasing mean air temperature until an optimum temperature was reached and then declined. There were no differences in the optimum temperatures for the leaf emergence rate per day among six cultivars, which ranged 20.1 to 21.5$^{\circ}C$. The leaf emergence rates at the optimum temperatures ranged 0.202 to 0.226 leaves / day for naked barley cultivars and 0.231 to 0.241 leaves / day for malting barley cultivars. As temperature increased, leaf emergence rate per GDD decreased exponentially and the phyllochron (GDD/leaf) increased exponentially. The mean of the phyllochron for six cultivars was 46.2 GDD at 4$^{\circ}C$ and 129.3 GDD at 28$^{\circ}C$. These results suggest that the temperature and cultivar effects must be considered for prediction of leaf development in barley.

  • PDF

The Effects of Transplanting Time and Meteorological Change to Variation of Phyllochron of Rice

  • Ku, Bon-Il;Choi, Min-Kyu;Kang, Shin-Ku;Lee, Kyung-Bo;Park, Hong-Kyu;Park, Tae-Seon;Ko, Jae-Kwon;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.3
    • /
    • pp.259-267
    • /
    • 2010
  • This study was performed at Rice and Winter Cereal Crops Department of NICS during 2007 and 2008 to investigate the characteristics of rice leaf emergence and to obtain basic data which can be used for rice growth simulation model by which we can forecast rice growth stage and heading date accurately under different cultivars, transplanting date, and climatic conditions. To confirm leaf emergence rate according to rice maturing ecotype, we surveyed the leaf emergence rate and heading date of Unkwangbyeo, Hwayoungbyeo and Nampyeongbyeo which are early maturing, medium maturing and medium-late maturing cultivars, respectively, according to seedling raising duration and transplanting time. When seedling duration was 15 days, the growth duration between transplanting time and completion of flag leaf emergence on main culm were 51.5~78.3 days in Unkwangbyeo, 55.3~87.9 days in Hwayoungbyeo and 58.4~98.4 days in Nampyeongbyeo, respectively. When seedling duration was 30 days, they were 50.1~75.5 days in Unkwangbyeo, 52.4~84.7 days in Hwayoungbyeo and 56.4~93.8 days in Nampyeongbyeo, respectively. As transplanting time delayed, the emerged leaf number after transplanting decreased in all rice cultivars. The cumulative temperature between transplanting time to completion of flag leaf elongation on main culm were $1,281^{\circ}C{\sim}1,650^{\circ}C$ in Unkwangbyeo, $1,344^{\circ}C{\sim}1,891^{\circ}C$ in Hwayoungbyeo and $1,454^{\circ}C{\sim}2,173^{\circ}C$ in Nampyeongbyeo, respectively. Leaf emergence rate on main culm were precisely represented by equation, y = $y_0$ + a / [1 + exp( - (x - $x_0$) / b)]^c, when we used daily mean temperature as variable.

Comparative Analysis of Root and Shoot Growth between Tongil and Japonica Type Rice

  • Kang, Si-Yong;Shigenori Morita
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.3
    • /
    • pp.161-167
    • /
    • 1998
  • Root and shoot development of two rice (Oryza sativa L.) cultivars with different genetic backgrounds was studied with reference to their relative growth. Tongil type (indica-japonica hybrid) cultivar 'Kuemkangbyeo' and japonica cultivar 'Koshihikari' were grown in $5000^{-1}$ a Wagnar pots under flooded condition. Three plants with roots of both cultivars were taken in every phyllochron through the heading stage to record morphological characteristics of shoot and root system. Compared to Koshihikari, Kuemkangbyeo produced more tillers and had greater shoot weight and leaf area per hill. Length and weight of the root system in both cultivars increased exponentially with time. At the same time, root system development was significantly faster in Kuemkangbyeo than in Koshihikari after the panicle initiation stage. As a result, Kuemkangbyeo has a vigorous root system which consists of larger number of nodal roots compared to Koshihikari. Also, the root length and weight per unit leaf area of Kuemkangbyeo were larger than those of Koshihikari in the later half of growing period, which suggests possible higher physiological activity of the root system of Kuemkangbyeo which is known as a high-yielding cultivar. The relationship between root traits (crown root number, total root length, and root dry weight) and shoot traits (leaf area and leaf+culm dry weight) in both cultivars closely showed allometry until the flag leaf stage.

  • PDF