• Title/Summary/Keyword: phthalimides

Search Result 10, Processing Time 0.023 seconds

Dipole-Forming Photochemical Group Transfer Reactions of Phthalimides and ${\alpha}-Ketoamides$

  • Yoon, Ung-Chan;Mariano Patrick S.
    • Journal of Photoscience
    • /
    • v.12 no.3
    • /
    • pp.155-162
    • /
    • 2005
  • Results of studies of SET-promoted dipole-forming photochemical group transfer reactions of phthalimide and ${\alpha}-ketoamide$ derivatives are discussed. Azomethine ylide forming photochemical reactions, which are initiated by intramolecular SET from tethered silylmethyl-, carboxymethyl-, and ${\beta}-hydroxyethyl$ containing electron donors to excited states of phthalimides, related maleimides, and conjugated imides, are presented first. Following this, investigations of regioselective 1,4-dipole forming photochemical reactions of N-trialkylsilylmethyl- and N-trialkylstannyl-${\alpha}$-ketoamides are described.

  • PDF

Comparison of Photocyclization Reactions of Fluoro- vs Nonfluoro-Substituted Polymethyleneoxy Donor Linked Phthalimides

  • Park, Hea Jung;Ryu, Young Ju;Kim, Kyung Mok;Yoon, Ung Chan;Kim, Eunae;Sohn, Youngku;Cho, Dae Won;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1108-1114
    • /
    • 2013
  • Photochemical reactions of fluoro- vs. nonfluoro-substituted polymethylenoxy chain linked phthalimide were carried out to explore how electronegative fluorine atoms inside the donor chain influence photocyclization reaction efficiencies and to briefly determine the alkali metal binding properties of the photoproducts. The results of this study show that the fluorine-substituted donor chain linked phthalimide undergoes inefficient photocyclization via single electron transfer (SET)-induced excited state pathways to generate 14-membered cyclic amidol compared to nonfluoro-analog due to low electron donor ability of the terminal oxygen donor site. These results show that photoinduced intramolecular SET processes arising from ${\alpha}$-silyl ether electron donors to phthalimides are largely dependent on the kinds of substituents inside donor chain. Finally, a preliminary study with the cyclic amidols generated in this effort showed that they have weak alkali metal cation binding properties regardless of absence/presence of fluoro-substituents.

Exploratory Study of Photocyclization Reactions of N-(Trimethylsilylmethylthioalkyl)phthalimides

  • Ung Chan Yoon;Sang Jin Lee;Kyung Ja Lee;Sung Ju Cho;Chan Woo Lee;Patrick S. Mariano
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.154-161
    • /
    • 1994
  • Studies have been conducted to explore single electron transfer (SET) induced photocyclization reactions of N-(trimethylsilylmethylthioalkyl)phthalimides (alkyl=ethyl, n-propyl, n-butyl, n-pentyl, and n-hexyl). Photocyclizations occur in methanol in modest to high yields to produce cyclized products in which phthalimide carbonyl carbon is bonded to the carbon of side chain in place of the trimethylsilyl group. Mechanism for these photocyclizations involving intramolecular SET from sulfur in the ${\alpha}$-silylmethylthioalkyl groups to the singlet excited state phthalimide moieties followed by desilylation of the intermediate ${\alpha}$ -silylmethylthio cation radicals and cyclization by radical coupling is proposed. In contrast, photoreactions of N-(trimethylsilylmethylthioalkyl)phthalimides in acetone follow different reaction routes to produce another cyclized products in which carbon-carbon bond formation takes place between the phthalimide carbonyl carbon and the carbon ${\alpha}$ to silicon and sulfur atoms via triplet carbonyl hydrogen abstraction pathway. The normal singlet SET pathway dominates this triplet process for photoreactions of these substances in methanol while the triplet process dominates the singlet SET pathway for those in acetone. The efficient and regioselective cyclization reactions observed for photolyses in methanol represent synthetically useful processes for construction of medium and large ring heterocyclic compounds.

The Synthetic Potential of SET Photochemistry of Silicon-Substituted Polydonor-Linked Phthalimides

  • Yoon, Ung Chan;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1099-1114
    • /
    • 2006
  • Our studies in the area of single electron transfer (SET) photochemistry have led to the discovery of efficient processes, in which regioselective formation of carbon-centered radicals takes place by nucleophile assisted desilylation of $\alpha$-trialkylsilyl substituted ether, thioether, amine and amide centered cation radicals. The rates of bimolecular desilylation of the intermediate cation radicals exceed those of other cation radical $\alpha$-fragmentation processes (e.g.,-deprotonation). This sereves as the basis for the design of highly regioselective, SET-induced photomacrocyclization reactions of polyether, polythioether, polyamide, and polypeptide linked phthalimides. Photocyclization reactions of trimethylsilyl-terminated substrates in these families are unique in that they produce polyfunctionalized macrocyclic substances in a highly efficient and regioselective manner. In addition, our studies in this area have led to important information about the factors that govern chemical and quantum efficiencies that should be applicable to a wide variety of redox processes promoted by SET from substrates containing more than one electron donor site.

Photocyclization Reactions of N-(Trimethylsilylmethoxyalkyl)Phthalimides. Efficient and Regioselective Route to Heterocycles

  • Yoon Ung Chan;Oh Ju Hee;Lee, Sang Jin;Kim, Dong Uk;Lee, Jong Gun;Kang Kyung-Tae;Mariano Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.166-172
    • /
    • 1992
  • Studies have been conducted to explore single electron transfer (SET) induced photocyclization reactions of N-(trimethylsilylmethoxyalkyl)phthalimides(alkyl=E thyl, n-propyl, n-butyl, n-pentyl, and n-octyl). Photocyclizations occur in methanol in high yields to produce cyclized products in which phthalimide carbonyl carbon is bonded to the carbon of side chain in place of the trimethylsilyl group. Mechanism for these photocyclizations involving intramolecular SET from oxygen in the $\alpha-silylmethoxy$ groups to the singlet excited state phthalimide moieties followed by desilylation of the intermediate $\alpha-silylmethoxy$ cation radicals and cyclization by radical coupling are proposed. In contrast, photoreaction of N-(trimethylsilylmethoxyethyl) phthalimide in acetone follows different reaction routes to produce two cyclized products in which carbon-carbon bond formation takes place between the phthalimide carbonyl carbon and the carbon $\alpha$ to silicon and oxygen atoms via triplet carbonyl hydrogen abstraction triplet carbonyl silyl group abstraction pathways. The normal singlet SET pathway dominates these triplet processes for photoreaction of this substance in methanol. The efficient and regioselective cyclization reactions observed for photolysis in methanol represent synthetically useful processes for construction of medium and large ring heterocyclic compounds.

The Influence of Aminium Radical Heterolytic Fragmentation Rates on the Nature and Efficiencies of SET-Promoted Photochemical Reactions

  • Yoon, Ung-Chan;Patrick S. Mariano
    • Journal of Photoscience
    • /
    • v.10 no.1
    • /
    • pp.89-96
    • /
    • 2003
  • Two important types of $\alpha$-heterolytic fragmentation reactions of aminium radicals are discussed. In these fragmentation processes, transfer of electrofugal groups from the aminium radicals to either Lowry-Bronsted or Lewis bases produces $\alpha$-amino radicals. The results of recent studies that provided key information about the dynamics of the important aminium radical fragmentation reactions, deprotonation, desilylation, are summarized. Finally, selected examples, which demonstrate how knowledge of the relative rates of aminium radical cleavage can be used to design synthetically relevant SET-promoted photocyclization reactions, are presented.

  • PDF

Photochemical Approach to the Preparation of Lariat Crown Ethers Containing Peptide Sidearms

  • Cho, Dae-Won;Quan, Chunsheng;Park, Hea-Jung;Yoon, Ung-Chan;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.503-509
    • /
    • 2011
  • New types of lariat type crown ethers containing peptide sidearms were prepared by using a novel strategy employing single electron transfer (SET)-induced photocyclization reactions of $\alpha$-silylether terminated phthalimides. Reactions of chiral substrates in this series produced diastereomeric mixtures of crown ether products as a result of the formation of new stereogenic center generation in the photocyclization process.

Single Electron Transfer Induced Photoaddition Reactions of Silyl Enol Ether to N-Methylphthalimide

  • Oh, Sun-Wha;Kim, Jin-Young;Cho, Dae-Won;Choi, Jung-Hei;Yoon, Ung-Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.629-634
    • /
    • 2007
  • Photochemical reactions of N-methylphthalimide with silyl enol ethers have been explored. Irradiations of phthalimide (1) and cyclic silyl enol ethers (5a-b) are observed to promote formation of photoreduced phthalimides and photoaddition products by sequential SET-desilylation pathways. The photoreaction of phthalimide (1) and acyclic silyl enol ethers (5c-d) leads to produce oxetanes which arise by competitive single electron transfer (SET) and classical 2+2 photocycloaddition (Parteno-Buchi reaction) pathways.

Synthesis and Herbicidal Activity of New N-{5-[(Pyrazolylmethyl)oxy]phenyl}imides (새로운 N-{5-[(Pyrazolylmethyl)oxy]phenyl}imide 유도체들의 합성 및 제초활성)

  • Kim, Kyoung-Mahn;Song, Jong-Hwan;Jeon, Dong-Ju;Kim, Hyoung-Rae;Choi, Jung-Sup;Oh, Do-Yeon;Ryu, Eung-K.
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.2
    • /
    • pp.72-75
    • /
    • 2000
  • 3,4-Dimethyl-N-[4-chloro-2-fluoro-5-{(pyrazolylmethyl)oxy}phenyl]maleimides or 3,4,5,6-tetrahydro-N-[4-chloro-2-fluoro-5-{(pylazolylmethyl)oxy} phenyl]phthalimides were prepared and evaluated their herbicidal activities under paddy conditions. Those compounds which have N-methyl-5-pyrazolylmethyloxy moiety showed good tolerance in transplanted rice and strong herbicidal activities on barnyardgrass below 60 g/ha of dose.

  • PDF