• Title/Summary/Keyword: photosystem II

Search Result 145, Processing Time 0.03 seconds

Photodynamic Action by Endogenous Non-Chlorophyll Sensitizer As a Cause of Photoinhibition

  • Suh, Hwa-Jin;Kim, Chang-Sook;Jin Jung
    • Journal of Photoscience
    • /
    • v.7 no.3
    • /
    • pp.87-95
    • /
    • 2000
  • As sunlight not always optimized for every terrestrial plant in terms of light quality, quantity and duration, some plants suffer detrimental effects of sunlight exposure under certain conditions. Photoinhibition of photosynthesis is a typical phenomenon representing harmful light effects, commonly observed in many photosynthetic organisms. It is generally accepted that functional, structural loss of photosystem II complex(PSII) is the primary event of photoinhibition. Accumulating data also suggest that singlet oxygen($^1$O$_2$) is the main toxic species directly involved in it. There are two different views on the specific site and mechanism of $^1$O$_2$ production in the photosynthetic membrane. One of them favors the PSII reaction center, where the primary charge pairs recombination occurs as a prerequisite for the generation of $^1$O$_2$, and the other inclines to photosensitized $^1$O$_2$ formation by a substance located outside PSII. This article describes how we, as the advocators of the latter concept, have arrived at the conclusion that $^1$O$_2$ immediately involved in PSII photodamage is largely generated from the Rieske center of the cytochrome b$_{6}$/f complex and diffuses into PSII, attacking the reaction center subunits.s.

  • PDF

MERCURY-INDUCED ALTERATIONS OF CHLOROPHYLL a FLUORESCENCE KINETICS IN ISOLATED BARLEY (Hordeum vulgare L. cv. ALBORI) CHLOROPLASTS

  • Chun, Hyun-Sik;Lee, Choon-Hwan;Lee, Chin-Bum
    • Journal of Photoscience
    • /
    • v.1 no.1
    • /
    • pp.47-52
    • /
    • 1994
  • Effects of HgCl$_2$-treatment on electron transport, chlorophyll a fluorescence and its quenching were studied using isolated barley (Hordeum vulgare L. cv. Albori) chloroplasts. Depending on the concentration of HgCI$_2$, photosynthetic oxygen-evolving activities of photosystem II (PS II) were greatly inhibited, whereas those of photosystem I (PS I) were slightly decreased. The inhibitory effects of HgCl$_2$ on the oxygen-evolving activity was partially restored by the addition of hydroxyamine, suggesting the primary inhibition site by HgCl$_2$2-treatment is close to the oxidizing site of PS tl associated with water-splitting complex. Addition of 50 $\mu$M HgCI$_2$ decreased both photochemical and nonphotochemical quenching of chlorophyll fluorescence. Especially, energy dependent quenching (qE) was completely disappeared by HgCl$_2$-treatment as observed by NH$_4$CI treatment. In the presence of HgCI$_2$, F'o level during illumination was also increased. These results suggest that pH gradient across thylakoid membrane can not be formed in the presence of 0 $\mu$M HgCl$_2$. In addition, antenna pigment composition might be altered by HgCl$_2$-treatment.

  • PDF

Structural Changes of the Spinach Photosystem II Reaction Center After Inactivation by Heat Treatment

  • Jang, Won-Cheoul;Tae, Gun-Sik
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.58-62
    • /
    • 1996
  • The structural changes in the electron donor side of the PSII reaction center have been monitored since heat treatment ($45^{\circ}C$ for 5 min) of thylakoids is known to decrease the oxygen evolving activity. In heat-treated spinach chloroplast thylakoids, the inhibitory effect of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the electron transport activity of the PSII reaction center from diphenyl carbazide to dichlorophenolindophenol became reduced approximately 3.8 times and [$^{14}C$]-labeled DCMU binding on the D1 polypeptide decreased to 25~30% that of intact thylakoid membranes, implying that the conformational changes of the DCMU binding pocket, residing on the D1 polypeptide, occur by heat treatment. The accessibility of trypsin to the $NH_2$-terminus of the cytochrome b-559 ${\alpha}$-subunit, assayed with Western blot using an antibody generated against the synthetic peptide (Arg-68 to Arg-80) of the COOH-terminal domain, was also increased, indicating that heat-treatment caused changes in the structural environments near the stromal side of the cytochrome b-559 ${\alpha}$-subunit, allowing trypsin more easily to cleave the $NH_2$-terminal domain. Therefore, the structural changes in the electron donor side of the PSII reaction center complexes could be one of the reasons why the oxygen evolving activity of the heat-treated thylakoid membranes decreased.

  • PDF

Self-Assembled Peptide Structures for Efficient Water Oxidation

  • Lee, Jae Hun;Lee, Jung Ho;Park, Yong Sun;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.280-280
    • /
    • 2013
  • In green plants, energy generation is accomplished through light-harvesting photosystem, which utilize abundant visible light and multi-stepwise redox reaction to oxidize water and reduce NADP+, transferring electrons efficiently with active cofactors1. Inspired by natural photosynthesis, artificial solar water-splitting devices are being designed variously. However, the several approaches involving immobilization2, conjugation3, and surface modification4 still have limitations. We have made artificial photosynthesis templates by self-assembling tyrosine-based peptide to mimick photosystem II. Porphyrin sensitizer absorbing blue light strongly was conjugated with the templates and they were hybridized with cobalt oxide through the reduction of cobalt ions in an aqueous solution. The formation of hybrid templates was characterized using TEM, and their water oxidation performance was measured by fluorescence oxygen probe. Our results suggest that the bio-templated assembly of functional compounds has a great potential for artificial photosynthesis.

  • PDF

Leaf Senescence in a Stay-Green Mutant of Arabidopsis thaliana: Disassembly Process of Photosystem I and II during Dark-Incubation

  • Oh, Min-Hyuk;Kim, Yung-Jin;Lee, Choon-Hwan
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.256-262
    • /
    • 2000
  • In this study the disassembly process of chlorophyII (ChI)protein complexes of a stay-green mutant (ore10 of Arabidopsis thaliana) was investigated during the dark incubation of detached leaves. During this dark-induced senescence (DIS), the Chi loss was delayed in the mutant, while the photochemical efficiency of photosystem II (PSII) or Fv/Fm was accelerated when compared with the wild type (WT) leaves. This indicates that the decrease in Fv/Fm is a separate process and not causally-linked to the degradation of Chi during DIS of Arabidopsis leaves. In the native green gel electrophoresis of the Chi-protein complexes, which was combined with an additional twodimensional SDS-PAGE analysis, the delayed senescence of this mutant was characterized by the appearance of an aggregate at 1 d or 2 d, as well as very stable light harvesting complex II (LHCII) trimers until 5 d after the start of DIS. The polypeptide composition of the aggregates varied during the whole DIS at 5 d. Dl protein appeared to be missing in the aggregates. This result supports the idea of a faster depletion of functional PSH in the mutants compared with WT, as suggested by the earlier reduction of Fv/Fm and the stable Chl a/b ratio in the mutants. At 5 d, the WT leaves also often showed aggregates, but the polypeptide composition was different from those of ore10. The results presented suggest that the formation of aggregates, or stable LHCII trimers in the stay-green mutants, is a way to structurally protect Chi-protein complexes from serious proteolytic degradation. Detailed disassembly processes of Chi-protein complexes in WT and ore10 mutants are discussed.

  • PDF

Glyphosate Toxicity: III. Detection of QB Protein in Thylakoid Membrane of Tomato Apical Meristem Using an Antibody Raised from Hybrid Protein of psb A and lac Z Gene (Glyphosate 독성: III. psb A와 lac Z 유전자의 Hybrid 단백질로부터 만들어진 항체를 이용한 토마토 정단분열조직의 Thylakoid막 내 QB 단백질의 검정)

  • Kim, Tae-Wan;Amrhein, Nikolaus
    • Korean Journal of Weed Science
    • /
    • v.15 no.3
    • /
    • pp.206-213
    • /
    • 1995
  • Glyphosate(N-[phosphonomethyl]glycine) applied to the assimilate-exporting leaves(i.e. third old leaf) of tomato(Lycopersicon esculentum Mil var. Moneymaker). Herbicide binding protein, QB protein(D1), has been immunoblotted using the antibodies raised against the hybrid-protein expressed by a part of spinach psb A gene cloned in frame with the 3'end of lac Z gene to allow expression of the ${\beta}$-galactosidase(EC 3.21.23) in Escherichia coli. Glyphosate has an effect on a turnover of D1 within photosystem II of thylakoid membrane. The dysfunction of D1 protein within light harvesting complex(LHC-II) seems to be a pleiotropic effect of glyphosate.

  • PDF

Effects of iso-Butanol on Photosynthetic Electron Transport Activity in Isolated Spinach Chloroplasts (시금치(Spinacia oleracea L.) 엽록체의 광합성 전자전달 활성에 미치는 iso-Butanol의 영향)

  • 박강은
    • Journal of Plant Biology
    • /
    • v.35 no.3
    • /
    • pp.247-252
    • /
    • 1992
  • The effect of iso-butanol on the electron transport rate of PS I and PS II was investigated in isolated spinach chloroplasts. In photosystem I, the rate of electron transport increased in the presence of 1 to 4% of isobutanol but decreased in 5 to 9% of iso-butanol. But in photosystem II, the rate of electron transport decreased when treated with 0.2 to 1% of iso-butanol. The inhibitory effect of isomers of butanol on PS II electron transport rate increased in the order of 2-butanol, tert-butanol, iso-butanol and I-butanol. This means that PS II activity was affected according to the arrangement of carbon atoms in butanol. The inhibitory effect of iso-butanol reduced when DPC was added in the solution. This means that iso-butanol affects PS II reduction side of thylakoid membrane primarily. The inhibitory effect of iso-butanol was reduced when $Mn^{2+},\;C^{2+}$ or BSA were added in the solution. PS II activity was restored when 1% iso-butanol treated chloroplast solution was diluted to twentyfold or when $Mn^{2+},\;C^{2+}$ or BSA was added to the diluted solution. However, the SDS-PAGE banding pattern of thylakoid membrane proteins was similar even in 2% iso-butanol treated chloroplasts and the control ones. Only in 5% iso-butanol treated chloroplasts these bands were very weak. These observations suggest that low concentrations of iso-butanol releases manganese and calcium ions from chloroplasts and inhibits the electron transport system. This inhibitory effect can be reversible in low concenterations but in high concentrations the inhibitory effect of iso-butanol become irreversible.rsible.

  • PDF

Changes in Photosynthetic Characteristics during Grain Filling of a Functional Stay-Green Rice SNUSG1 and its $F_1$ Hybrids

  • Fu, Jin-Dong;Lee, Byun-Woo
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.75-82
    • /
    • 2008
  • Functional stay-green is a beneficial trait that may increase grain yield through the sustained photosynthetic competence during monocarpic senescence in cereal crops. The temporal changes of photosynthesis and related characteristics throughout the grain filling period of a stay-green japonica rice "SNU-SG1" was compared in growth chamber conditions with three high-yielding cultivars(HYVs) and their $F_1$ hybrids with SNU-SG1. SNU-SG1 exhibited a typical characteristic of functional stay-green in terms of chlorophyll degradation and photosynthetic competence during grain filling. According to the photosynthesis-light response curve measured at 10 and 35 d after heading for the flag leaf, SNU-SG1 exhibited higher initial light conversion efficiency and thus higher gross photosynthetic rate at light saturation compared to HYVs. Light saturation point was not different among genotypes, ranging from 1000 to 1500 ${\mu}mol$ photon $m^{-2}s^{-1}$. Net photosynthetic rate at light saturation($P_{max}$) of the upper four leaves in SNU-SG1 was much higher and sustained longer throughout grain-filling than HYVs and $F_1$ hybrids. The sustained high photosynthetic competence of SNU-SG1 during grain filling was ascribed to the longer maintenance of high mesophyll conductance that resulted from not only high chlorophyll content and its delayed degradation but also the slow degeneration of photosystem II(PS II) as judged by chlorophyll fluorescence($F_v/F_m$) of flag leaves. $F_1$ hybrids showed slow degeneration of photosystem II similar to the male parent SNU-SG1 while chlorophyll degradation pattern close to female parents, thus exhibiting a little higher $P_{max}$ than female parents. These results suggest that SNU-SG1 has a typical functional stay-green trait that can be utilized for increasing rice yield potential through the improved dry matter production during grain filling.

  • PDF