• 제목/요약/키워드: photosystem II

검색결과 148건 처리시간 0.022초

Dark-chilling Pretreatment Protects PSI from Light-chilling Damage

  • Kudoh, Hideki;Sonoike, Kintake
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.59-62
    • /
    • 2002
  • In chilling-sensitive plants, the donor side of Photosystem II is inhibited by the chilling treatment in the dark, while the acceptor side of Photosystem I is inhibited by the chilling under the moderate light. Since the addition of inhibitors of electron transfer from Photosystem II protects Photosystem I from chilling induced photoinhibition of Photosystem I, inhibition or down-regulation of Photosystem II activity in vivo may also protect Photosystem I from photoinhibition. It was revealed that dark-chilling pretreatment actually protected Photosystem I from photoinhibition. The results imply that down-regulation of Photosystem II under stress conditions may have a role to protect Photosystem I from photoinhibition.

  • PDF

연(Pb)에 의한 광계 II 활성억제에 미치는 인산 및 ATP 전처리의 보호효과 (Protective Effects of Phosphate and ATP Pretreatment on Pb-Inhibiting Photosystem II Activity)

  • 성민웅
    • Journal of Plant Biology
    • /
    • 제25권1호
    • /
    • pp.21-36
    • /
    • 1982
  • The activity of photosystem II in isolated chloroplast form the leaves of Sedum sarmentosum was measured. The photoreduction rate of DCPIP by photosystem II showed the circadian rhythm with a peak at near midday sample for a continuing fine day and at near afternoon between nidday and sunset sample for a continuing cloudy day in summer. The optimum light intensity of photoreduction by photosystem II in the chloroplast preparation was about 5~9$\times$$10^4$ lux. The saturated light intensity was over 9$\times$$10^1$lux. Photosystem II activity was inhibited by even the lowest concentration of lead. When Pi and ATP of the same concentration as Pb were added to the reaction mixture containing Tris buffer lacking of Pi prior to Pb incubation, photosystem II activity was protected from Pb-inhibiting effect by the pretreament of Pi and ATP. It was assumed that Pb inhibiiton was probably due to one, P-depriving by the precipitates of $Pb_3$ $($Pb_4$)_2$ in the reaction mixture and the other, partially Pb-combing with Pi groups of the active site of photosystem II.

  • PDF

Formation of Cross-Linked Products of The Reaction Center D1 Protein in Photosystem II under Light Stress

  • Uchida, Suguru;Kato, Yoji;Yamamoto, Yasusi
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.382-384
    • /
    • 2002
  • When illuminated with strong visible light, the reaction center Dl protein of photo system II is photodamage and degraded. Reactive oxygen species and endogenous cationic radicals generated by photochemical reactions are the cause of the damage to the Dl protein. Recently we found that the photodamaged Dl protein cross-links with the surrounding polypeptides such as D2 and CP43 in photosystem II. As the cross-linking reaction is dependent on the presence of oxygen, reactive oxygen species are suggested to be involved. Among the reactive oxygen species examined, ? OH was most effective in the formation of the cross-linked products. These results indicate that the cross-linking is mostly due to ? OH generated at photosystem II. The cross-linking site of the Dl protein is not known. As several tyrosine residues exist at the D­E loop of the Dl protein, there is a possibility that di-Tyr is formed between the D­E loop of the Dl protein and surrounding polypeptides during the strong illumination. Therefore, we examined the formation of di-Tyr using the monoclonal antibody against di-Tyr under excess illumination of the photosystem II membranes. The results obtained here suggest that no di-Tyr is formed during the excess illumination of photosystem II.

  • PDF

Quality Control of Photosystem II during Photoinhibition

  • Yamamoto, Yasusi
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.55-58
    • /
    • 2002
  • The reaction center Dl protein of photosystem II is the target of photodamage by excess illumination. The Dl protein is damaged by reactive oxygen species generated by photochemical reactions and then degraded by specific proteolytic enzymes. We found that the Dl protein also cross-links with the surrounding polypeptides, such as D2 and CP43 in isolated thylakoids or photosystem II-enriched membranes from spinach under the illumination with strong visible light. The cross-linking was observed in spinach leaf discs as well when they were illuminated at higher temperature (40°C). It was also shown that the cross-linked products are digested efficiently by a protease(s) in the stroma. Thus the cross-linking/digestion processes of the Dl protein seem to comprise a new pathway in the turnover of the photodamaged Dl protein. It should be noted, however, that the cross-linked products of the Dl protein and CP43 induced by endogenous cationic radicals in the donor-side photoinhibition are resistant to proteolytic digestion. Accumulation of these cross-linked products in the thylakoids may lead to the decay of the function of chloroplasts and finally to the death of plant cells. Thus, we suggest that the quality control of photosystem II, especially removal of the cross-linked products of the Dl protein, is crucial for the survival of chloroplasts under the light stress.

  • PDF

Differential Recovery of Photosystem II Complex from Low-Temperature Photoinhibition in Plants with Different Chilling Sensitivity

  • Moon, Byoung-Yong;Norio Murata
    • Journal of Photoscience
    • /
    • 제7권2호
    • /
    • pp.39-44
    • /
    • 2000
  • To examine the chilling tolerance lipids, we compared the chilling susceptibility of photosystem II of wild type tobacco plants with that of transgenic tobacco plants, in which the sensitivity to chilling had been enhanced by genetic modification of fatty acid unsaturation of chloroplast membrane lipids. The transgenic tobacco plants were found to contain reduced levels of unsaturated membrane fatty acids by being tansformed with cDNA for glycerol-3-phosphate acyltransferase from squash. For the purpose of studying on the functional integrity of photosystem II during low-temperature photoinhibition, the photochemical efficiency was measured as the ration of the maximun fluorescence of chlorophyll (Fv/Fm) of photosystem II. In parallel with an investigation on the transgenic plants, susceptibility of chilling-resistant species, such as spinah and pea, and of chilling-sensitive ones, such as squash and sweet potato, to low-temperature photoinhibition was also compared in terms of room temperature-induced chlorophyll fluorescence from photosystem II. When leaf disks from the two genotypes of tobacco plants were exposed to light at 5$^{\circ}C$, the transgenic plants showed more rapid decline in photochemical activity of photosysytme II than wild-type plants. When they were pretreated with lincomycin, an inhibitor of chloroplast-encoded protein synthesis, the extent of photoinhibition was even more accelerated. More impottantly, they showed a comparable extent of photoinhibition in the presence of lincomycin, making a clear contrast to the discrepancy observed in the discrepancy observed in the absence of lincomycin. Restoration of Fv/Fm during recovery from low-temperature photoinhibition occurred more slowly in the transgenic tobacco plants than the wild-type. These findings are discussed in relation to fatty acid unsaturation of membrane phosphatidylglycerol. It appears that the ability of plants to rapidly regenerate the active photosystem II complex from might explain, in part, why chilling-resistant plants can toleratlow-temperature photoinhibition.

  • PDF

Configurtion of electron transfer cofactors in photosystem II studied by pulsed EPR

  • Asako Kawamori;NobuhiroKatsuta;Sachiko Arao;Hideyuki Hara;Hiroyuki Mino;Asako Ishii;Ono, Taka-aki;Jun Minagawa
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.379-381
    • /
    • 2002
  • The major electron transfer cofactors in photosystem II have been studied by pulsed EPR, pulsed electron electron double resonance (PELDOR) and laser excited spin polarized electron spin echo envelope modulation (ESEEM) methods, in non-oriented and oriented photosystem II membranes. Distances between radical pairs were determined trom the observed dipole interaction constants to be 27.3 A for P680-QA, 30 A, etc. with the error within 1 A. Angles between the distance vector and membrane normal was determined by orientation dependence of oriented membranes with the accuracy of 5˚ The results were compared with the recent structural data by X-ray analysis.

  • PDF

Hydrogen Evolution from Biological Protein Photosystem I and Semiconductor BiVO4 Driven by Z-Schematic Electron Transfer

  • Shin, Seonae;Kim, Younghye;Nam, Ki Tae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.251.2-251.2
    • /
    • 2013
  • Natural photosynthesis utilizes two proteins, photosystem I and photosystem II, to efficiently oxidize water and reduce NADP+ to NADPH. Artificial photosynthesis which mimics this process achieve water splitting through a two-step Z-schematic water splitting process using man-made synthetic materials for hydrogen fuel production. In this study, Z-scheme system was achieved from the hybrid materials which composed of hydrogen production part as photosystem I protein and water oxidizing part as semiconductor BiVO4. Utilizing photosystem I as the hydrogen evolving part overcomes the problems of existing hydrogen evolving p-type semiconductors such as water instability, expensive cost, few available choices and poor red light (>600 nm) absorbance. Some problems of photosystem II, oxygen evolving part of natural photosynthesis, such as demanding isolation process and D1 photo-damage can also be solved by utilizing BiVO4 as the oxygen evolving part. Preceding research has not suggested any protein-inorganic-hybrid Z-scheme composed of both materials from natural photosynthesis and artificial photosynthesis. In this study, to realize this Z-schematic electron transfer, diffusion step of electron carrier, which usually degrades natural photosynthesis efficiency, was eliminated. Instead, BiVO4 and Pt-photosystem I were all linked together by the mediator gold. Synthesized all-solid-state hybrid materials show enhanced hydrogen evolution ability directly from water when illuminated with visible light.

  • PDF

The Photoinactivation of Photosystem II in Leaves: A Personal Perspective

  • Chow, Wah-Soon
    • Journal of Photoscience
    • /
    • 제8권2호
    • /
    • pp.43-53
    • /
    • 2001
  • a, a parameter that describes how effectively photoinactivated PS II units protect their functional neighbours; car, carotenoids; ΔpH, transthylakoid pH difference; D1 protein, psbA gene product in the PS II reaction centre; f, functional fraction of PS II: F$\_$v//F$\_$m/, the ratio of variable to maximum chlorophyll a fluorescence; k$\_$d/, rate coefficient for degradation of D1 protein; k$\_$i/ and k$\_$r/, rate coefficient for photoinactivation and repair of PS II, respectively; NADP+, oxidized nicontinamide adenine dinucleotide phosphate; P680, the primary electron donor in the PSII reaction centre; Ph, pheophytin; PS, photosystem; Q$\_$A/, first quinone acceptor of an electron in PS II; R$\_$s/, the gross rate of D1 protein synthesis.

  • PDF

RAPID RECOVERY OF PHOTOSYNTHESIS FROM PHOTOINHIBITION IS RELATED TO FATTY ACID UNSATURATION OF CHLOROPLAST MEMBRANE LIPIDS IN CHILLING-RESISTANT PLANTS

  • Moon, Byoung-Yong;Kang, In-Soon;Lee, Chin-Bum
    • Journal of Photoscience
    • /
    • 제5권1호
    • /
    • pp.1-10
    • /
    • 1998
  • The susceptibility of chilling-resistant spinach plants. and of chilling-sensitive squash plants to photoinhibition was compared in terms of the activity of photosystem II, in relation to the deuce of fatty acid unsaturation of chloroplast membrane lipids. From thylakoid membranes of the plants. monogalactosyl diacylgtycerol, digalactosyl diacylglycerol. sulfoquinovosyt diacylglycerol, and phosphatidylglycerol were seperated as major lipid classes. It was found that the content of cis-unsaturated fatty acids of phosphatidylglycerol was greater by 32% in spinach than that in squash. When leaf disks were exposed to light at 5$\circ$C, 15$\circ$C and 25$\circ$C, photochemical efficiency of photosystem II. measured as the ratio of the variable to the maximum fluorescence of chlorophyll, declined markedly in squash plants, as compared to spinach plants. When leaf disks were exposed to strong light in the presence of lincomycin, an inhibitor of protein synthesis in chloroplasts, photoinhibition was accelerated in the two types of plants. Moreover, lincomycin treatment abolished the differences in the degree of susceptibility to strong light, which had been observed between the two types of plants. When the extent of photoinhibition of photosystem II-mediated electron transport was compared in thylakoid membranes isolated from the two types of plants, there were no differences in the degree of inactivation of photosystem II activity. However, when intact leaf disks were exposed to strong light either at 10$\circ$C or at 25$\circ$C, and then were allowed to recover either at 17$\circ$C or at 25$\circ$C in dim light. chilling-resistant plants such as spinach and pea showed marked recovery from photoinhibition, in contrast to chilling-sensitive plants, such as squash and sweet potato. whose recovery was strongly dependent on the temperature. These findings are discussed in relation to the unsaturation of fatty acids in membrane phosphatidylglycerol. It appears that fatty acid unsaturation of membrane lipids accelerates the recovery of photosystem H from photoinhibition, without affecting the photo-induced inactivation process of photosystem II associated with photoinhibition.

  • PDF

토양 건조 및 침수처리가 박태기나무의 광계 II 활성에 미치는 영향 (Effects of Soil Drought and Waterlogging on Photosystem II Activities in Cercis Bunge)

  • 이경철;이의열;윤경규;권영휴;한상균
    • 현장농수산연구지
    • /
    • 제22권1호
    • /
    • pp.35-42
    • /
    • 2020
  • This study was conducted to investigate the photosystem II activities of Cercis chinensis by soil water condition. Drought stress was induced by withholding water and waterlogging treatments was immerging the pots for 15 days. Results showed that the relative activities per reaction center such as ABS/RC, TRo/RC and Dio/RC were significantly increased compared with the control group after 12 days in waterlogging treatments. Particularly, Dio/RC increased substantially under waterlogging stress, indicating that excessive energy was consumed by heat dissipation. Furthermore, the performance index on absorption basis(PIabs) and responses to structural and functional PS II(SFIabs) were dramatically decreased after 15 days in both the drought and waterlogging treatments, which reflects the relative reduction state of the photosystem II. These results of chlorophyll a fluorescence by OKJIP analysis show that the sensitive changes photosystem II activity. Thus, on the basis of our results that Cercis chinensis was exhibited a strong reduction of photosynthetic activity to waterlogging stress, and OKJIP parameters such as ABS/RC, DIo/RC, PIabs and SFIabs could be useful indicator to monitor the physiological states of Cercis chinensis under soil water condition.