• 제목/요약/키워드: photosynthetic process

검색결과 69건 처리시간 0.024초

Chlorella 의 물질대사에 미치는 미양원소의 결핍효과 1 (제 1 ) -생 및 광합성 에 관하여- (Effect of micronutritional-element deficienies on the metabolism of Chlorella cells. (I) -On the growth rate, respiation and photosynthesis-)

  • 이영록;진평;심웅섭
    • 미생물학회지
    • /
    • 제5권1호
    • /
    • pp.15-19
    • /
    • 1967
  • Chlorella ellipsoidea cells were cultured in an iron, copper, zinc, manganese, molybdenum or boron-free medium. Physiological activities such as growth rate, reproduction, endogenous and glucose respiration, photosynthetic activity and biosythesis of chlorophyll of the micro-element definition cells were measured. It generally, growth rate, respiratory and photosynthetic activities, and biosynthesis of chlorophyll of the micro-element deficient cells decreased more or less, compared with those of the normal cells. The growth of the algal cells in an iron-free medium were retarded severely with the chlorosis, and the photosynthetic activity of the cells decreased remarkably even though the low content of chlorophyll in the cells owing to the iron-deficiency is considered. Therefore, it is deduced that iron takes part in the photosynthetic process itself, possibly by its participation in the photo phosphorylation coupled with electron transport. Respiratory activity of boron-deficient cells showed the most severe decrease whereas those of the molybdenum-deficient cells showed very slight decrease in spite of severe growth retardation.

  • PDF

담배의 노화과정 중 광합성 및 단백질 함량의 변화 (Changes in Photosynthetic Rate and Protein Content in the Leaf during the Senescence of Tobacco Plant (Nicotiana tabacum L))

  • 이상각;심상인;강병화
    • 한국연초학회지
    • /
    • 제17권1호
    • /
    • pp.20-26
    • /
    • 1995
  • This study was carried out to obtain the basic data which include the change of the photosynthetic rate and protein content according to growth stage in the process of senescence of tobacco plant The photosynthetic rate was the maximum with 26.31$\mu$mol.CO2/m2.sec and stomatal resistance was the minimum with 0.2552cm/sec at 15th days after leaf emergence. However, after 50 days the photosynthesis was very little occurred. During leaf developments the number of chloroplast was increased and reached at the maximum at 25th days after emergence of leaf, thereafter, it was decreased gradually. The content of protein increased continuously and showed the highest value at 15th days after leaf emergence. The degradation rate of soluble protein was more rapid than that of insoluble protein at early stage of senescence. The range of decrement in the insoluble protein was low at late stage of senescence. The content of Rubisco, the key enzyme of photoamthesis, corresponded to about 50% of soluble protein and reached to the maximum at 150 days after leaf emergence. As the senescence progressed, the content of large subunit(UV) of Rubisco showed a tendency to decrease more rapidly than that of small subunit(SSU). The total amount of amino acids was the highest at 15th days after leaf emergence.

  • PDF

Optimization of Producing Liquid Fuel from Photosynthetic Algal Growth

  • Pak, Jin-Hong;Lee, Shin-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제1권2호
    • /
    • pp.111-115
    • /
    • 1991
  • The green alga, Dunaliella salina under fed-batch cultivation produced 51.12 mg of hydrocarbon per liter with maintaining 0.313 (g dry wt/l). About 20% of hydrocarbon production yield based on dry biomass was obtained from both batch and fed-batch processes. Optimum culture conditions of light intensity, pH and salt concentration were obtained as 0.0080 (kJ/$cm^2$/h), 8.0 and 1.4 (g of NaCl/l), respectively by response surface analysis. The production of hydrocarbons in D. salina was closely correlated to cell growth. Fed-batch cultivation produced more hydrocarbons and maintained better cell growth than a batch process.

  • PDF

Effects of Ultraviolet-B Radiation on Growth and Photosynthesis in Cucumber Primary Leaves

  • Kim, Hyo-Jin;Kim, Tae-Yun;Hong, Jung-Hee
    • 한국환경과학회지
    • /
    • 제15권12호
    • /
    • pp.1093-1101
    • /
    • 2006
  • In the present study we studied the growth, photosynthetic traits and protective mechanisms against oxidative stress in the primary loaves of cucumber (Cucumis sativus L.) seedlings with or without UV-B treatment. Cucumber seedings were irradiated with UV-B for 10 days in environment-controlled growth chambers. The primary leaves irradiated with UV-B showed reduction in leaf length and decreased biomass production. The reduced biomass production seemed to be due to a negative effect of UV-B radiation on the photosynthetic process. Changes in chemical properties of leaf, such as chi a/b ratio affected photosynthesis. UV-B significantly affected chl b content compared with chi a in the light harvesting complex resulting reduced photosynthetic activity Fv/Fm decreased with an UV-B stress, suggesting that the photosynthetic apparatus, and particularly, PS II was damaged under UV-B stress. Malondialdehyde(MDA) concentration which represents the state of membrane lipid peroxidation Increased significantly under UV-B stress confirming an oxidative stress. UV-B exposure with SA solution(0.1-1.0 mM) can partially ameliorated some of the detrimental effects of UV-B stress. Leaf injuries including loss of chlorophyll and decreased ratio of Fv/Fm were reduced with combined application of UV-B and SA. ABA and JA showed similar mode of action in physiological effects on photosynthetic activities though the levels were lower than those from SA treated plants. Chloroplast ultrastructure was also affected by UV-B exposure. The thickness of leaf tissue components decreased and the number of grana and thylakoids was reduced in chloroplast applied UV-B or SA alone. At combined stress granal and stromal thylakoids were less affected. The leaves under combined stress acquired a significant tolerance to oxidative stress. From these results, it can be suggested that SA may have involved a protective role against UV-B induced oxidative damage.

인위적인 수분처리에 의한 물푸레나무와 들메나무의 엽록소 함량 및 광합성에 미치는 영향 (Effects of Artificial Water Treatment on Chlorophyll Contents and Photosynthetic Characteristics in Fraxinus rhynchophylla and Fraxinus mandshurica Seedlings)

  • 이수원;최정호;정진철;권기원;유세걸;배종향
    • 생물환경조절학회지
    • /
    • 제17권2호
    • /
    • pp.101-109
    • /
    • 2008
  • 인위적인 토양내 수분처리 결과 물푸레나무와 들메나무 모두 6월<8월<9월로 갈수록 엽록소 함량이 증가하였다. 생육기간이 지나는 동안 엽록소 a는 0.89mg/g에서 1.67mg/g로, 엽록소 b는 0.18mg/g에서 0.44mg/g을 나타냈으며, 두 수종 모두 6월보다 8월과 9월에 높은 함량 증가를 보였다. 두 수종의 광합성율을 보면, 물푸레나무는 각 토양수분 처리구마다 광합성율의 차이를 보였으며, 충분한 토양수분처리구($90{\sim}78%$)의 묘목이 상대적으로 낮은 토양수분조건에서 자란 묘목보다 높은 경향을 나타냈다. 들메나무 역시 물푸레나무와 비슷한 경향을 보였으며, 토양수분이 높을수록 광합성률이 높게 나타났고, 감소할수록 광합성률이 감소하였다. 광합성율의 생육시기별 변화는 두 수종 모두 9월>8월>6월 순으로. 9월에 상대적으로 높은 광합성률을 나타냈다. 이로 미루어보면 두 수종은 생장시기에 상관없이 수분함량이 높은 처리구에서 광합성이 활발히 이루어지는 것으로 생각된다.

형질전환 담배의 내건성 개선 (Improvement of Drought Tolerance in Transgenic Tobacco Plant)

  • 박용목
    • 한국환경과학회지
    • /
    • 제25권1호
    • /
    • pp.173-179
    • /
    • 2016
  • Leaf water and osmotic potential, chlorophyll content, photosynthetic rate, and electrolyte leakage were measured to evaluate tolerance to water stress in wild-type (WT) and transgenic tobacco plants (TR) expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts. Leaf water potential of both WT and TR plants decreased similarly under water stress condition. However, leaf osmotic potential of TR plants more negatively decreased in the process of dehydration, compared with WT plants, suggesting osmotic adjustment. Stomatal conductance (Gs) in WT plants markedly decreased from the Day 4 after withholding water, while that in TR plants retained relatively high values. Relatively low chlorophyll content and photosynthetic rate under water stress were shown in WT plants since $4^{th}$ day after treatment. In particular, damage indicated by electrolyte leakage during water stress was higher in WT plants than in TR plants. On the other hand, SOD and APX activity was remarkably higher in TR plants. These results indicate that transgenic tobacco plants expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts improve tolerance to water stress.

Oryza glaberrima 계통과 Oryza sativa 품종의 등숙기간중 SPAD치와 광합성속도의 변화 (Changes in SPAD Value and Phothosynthetic Rate during Grain Filling of Oryza glaberrima Strains and Oryza sativa Cultivars)

  • 윤영환
    • 한국작물학회지
    • /
    • 제42권6호
    • /
    • pp.759-765
    • /
    • 1997
  • O. glaberrima 10계통과 O. sativa 10품종을 공시하여 출수후 1, 3, 5주에 주간의 SPAD치(엽록소함량)와 광합성속도를 측정하였다. O. glaberrima 계통은 출수후 1주에서 3주, 5주까지 SPAD치 및 광합성속도가 급격히 저하하는 경향을 나타내었다. O. sativa 품종은 O. glaberrima 계통보다 저하속도가 적고 특히 출수후 1주에서 출수후 3주까지의 저하가 적었다. O. glaberrima 계통과 O. sativa 품종의 평균치를 비교하면 엽록소함량, 광합성속도 모두 출수후 1주에는 양종간에 유의차가 없었으나 출수후 3주이후 O. glaberrima의 계통이 유의적으로 적었다. SPAD치와 광합성속도의 관계는 O. glaberrima 계통은 출수후 1주와 출수후 3주에, O.sativa 품종은 출수후 1주와 출수후 5주에 유의한 정의 상관관계가 있었다. SPAD치 감소속도와 광합성 감소속도의 관계는 출수후 1주에서 출수후 3주의 기간에는 양종 모두 유의한 정의 상관관계가 있었다. 출수후 3주에서 출수후 3주까지는 O. glaberrima 계통은 유의한 정의 상관이 있었으나 O. sativa 품종은 유의차가 없었다. 이상이 결과 O. glaberrima 계통에서는 엽록소함량의 급격한 저하가 광합성속도 감소에 관여하고 있는 것으로 확인되었으나 O. sativa 품종은 엽록소함량의 저하가 반드시 광합성속도의 저하요인이 아님이 밝혀졌다.

  • PDF

Nanoscale Protein Chip based on Electrical Detection

  • Choi, Jeong-Woo
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.18-18
    • /
    • 2005
  • Photoinduced electron transport process in nature such as photoelectric conversion and long-range electron transfer in photosynthetic organisms are known to occur not only very efficiently but also unidirectionally through the functional groups of biomolecules. The basic principles in the development of new functional devices can be inspired from the biological systems such as molecular recognition, electron transfer chain, or photosynthetic reaction center. By mimicking the organization of the biological system, molecular electronic devices can be realized $artificially^{1)}$. The nano-fabrication technology of biomolecules was applied to the development of nano-protein chip for simultaneously analyzing many kinds of proteins as a rapid tool for proteome research. The results showed that the self-assembled protein layer had an influence on the sensitivity of the fabricated bio-surface to the target molecules, which would give us a way to fabricate the nano-protein chip with high sensitivity. The results implicate that the biosurface fabrication using self-assembled protein molecules could be successfully applied to the construction of nanoscale bio-photodiode and nano-protein chip based on electrical detection.

  • PDF

엽록체의 전자전달과 광음향 신호에 미치는 Simetryne의 영향 (Effect of Simetryne on Chloroplast-Mediated Electron Transport and Photoacoustic Signal)

  • 김현식
    • Journal of Plant Biology
    • /
    • 제31권3호
    • /
    • pp.205-215
    • /
    • 1988
  • The effects of simetryne on light induced electron transport and phosphorylation in isolated spinach (Spinacia oleracea L.) chloroplasts were investigated in comparison with sencor and DCMU. Simetryne, like sencor and DCMU, completely, inhibited PSII electron transport and phosphoryltion with 10-6 M treatment but did not inhibit PSI electron transport. Interference with the electron transport pathway was evidenced by the greater sensitivity of oxygen evolution and uptake than phosphorylation. The following order of decreasing inhibitory effectiveness was exihibited; DCMU>simetryne>sencor. The photoacoustic technique was also used to monitor the relative photosynthetic activity in the leaves treated with the herbicides (simetryne, sencor or DCMU) in vivo and in vitro. Photoacoustic measurements on intact leaves provide quantitative information on two related aspects of the photosynthetic process, namely, photochemical energy storage and oxygen evolution. The relative photoacoustic signal of leaves treated with the herbicides showed low level in 21 Hz, but high level in 380 Hz and on isolated chloroplasts (both 21 Hz and 380 Hz) in comparison with that of the untreated leaves. These results suggest that some of photochemical energy is converted into the heat owing to the inhibition of electorn transport pathway by the herbicides.

  • PDF

Rhodopseudomonas palustris KK14를 이용한 돈분폐수처리의 최적조건 검토 (Optimal Conditions for Treatment of Swine Wastewater using Rhodopseudomonas palustris KK14)

  • 김한수;이태경;김혁일;조홍연;양한철
    • Applied Biological Chemistry
    • /
    • 제37권4호
    • /
    • pp.295-302
    • /
    • 1994
  • 광합성세균에 의한 고농도 유기폐수 처리공정의 개발을 목적으로 폐수처리용 균주를 분리 동정하고 최근 고농도 유기폐수처리에 도입되고 있는 혐기성 소화와 광합성세균 반응조로 구성된 two-stage system에 적용시켜 각 단계별 폐수처리 최적화를 위한 조건들을 flask-scale에서 검토하였다. 부영양화된 토양, 연못, 논, 활성오니 등으로부터 1차적으로 활성이 높고 유기산 자화율이 우수한 균주를 분리하고 이중 가장 우수한 균주인 KK14를 선별하고 동정한 결과 Rhodopseudomonas palustris로 판명되었다. 광합성세균을 이용한 폐수처리공정의 첫단계인 산생성 단계에서는 혐기정치배양이 유기산 생성에 적합하였고 pH 5.0, HRT 2일로 운전시약 80%의 유기산 증가율을 보였다. 생성된 유기산이 광합성세균에 의해 자화되는 둘째 단계에서는 광합성세균 반응조의 조건을 pH 7.0, 온도 $30^{\circ}C$, 조도 4,000 lux로 했을 때 균의 생육도 및 유기산 자화율이 가장 우수했으며 초기 COD부하(kg COD/kg 광합성세균 건조중량)는 2 전후에서 가장 높은 COD제거율(92%/5일)을 나타내었다.

  • PDF