• Title/Summary/Keyword: photosynthetic mechanisms

Search Result 33, Processing Time 0.026 seconds

Setting time properties of cement matrix according to photosynthetic bacterial dilution ratio (광합성 세균 희석 비율에 따른 시멘트 경화체의 응결 특성)

  • Pyeon, Su-Jeong;Kim, Dae-Yeon;Lim, Jeong-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.89-90
    • /
    • 2018
  • In recent years, harmful substances and fine dust in the air are caused by respiratory and cardiovascular diseases through various mechanisms when they are introduced into the human body through respiration, thereby exacerbating human health and causing cancer by prolonged exposure do. In order to prevent such fine dust from being introduced into the room and to improve indoor air quality, improvement of air quality has attracted attention. Among indoor air pollutants, fine dust and CO2 are pollutants that are directly affected by indoor number and activity. The purpose of this study is to evaluate the basic performance of cement matrix using photosynthetic bacteria as a basic study of fine dust and CO2 adsorption type matrix to suppress indoor air pollution and improve air quality.

  • PDF

Changes in Photosynthetic Performance and Water Relation Parameters in the Seedlings of Korean Dendropanax Subjected to Drought Stress (건조 스트레스에 따른 황칠나무 유묘의 광합성과 수분특성인자 변화)

  • Lee, Kyeong Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.2
    • /
    • pp.181-187
    • /
    • 2018
  • Background: This study aimed to investigate out the influence of drought stress on the physiological responses of Dendropanax morbifera seedlings. Methods and Results: Drought stress was induced by discontinuing water supply for 30 days. Under drought stress, photosynthetic activity was significantly reduced with decreasing soil water content (SWC), as revealed by the parameters such as Fv/Fm, maximum photosynthetic rate ($P_{N\;max}$), stomatal conductance ($g_s$), stomatal transpiration rate (E), and intercellular $CO_2$ concentration (Ci). However, water use efficiency (WUE) was increased by 2.5 times because of the decrease in $g_s$ to reduce transpiration. Particularly, E and $g_s$ were remarkably decreased when water was withheld for 21 days at 6.2% of SWC. Dendropanax morbifera leaves showed osmotic adjustment of -0.30 MPa at full turgor and -0.13 MPa at zero turgor. In contrast, the maximum bulk modulus of elasticity ($E_{max}$) did not change significantly. Thus, Dendropanax morbifera seedlings could tolerate drought stress via osmotic adjustment. Conclusions: Drought avoidance mechanisms of D. morbifera involve reduction in water loss from plants, through the control of stomatal transpiration, and reduction in cellular osmotic potential. Notably photosynthetic activity was remarkably reduced, to approximately 6% of the SWC.

Photosynthetic characteristics and chlorophyll of Vitex rotundifolia in coastal sand dune

  • Byoung-Jun Kim;Sung-Hwan Yim;Young-Seok Sim;Yeon-Sik Choo
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.103-116
    • /
    • 2023
  • Background: This study analyzed the physiological adaptations of a woody plant, Vitex rotundifolia, in Goraebul coastal sand dunes from May to September 2022. Environmental factors and physiological of plants growing under field and controlled (pot) conditions were compared. Results: Photosynthesis in plants growing in the coastal sand dunes and pots was the highest in June 2022 and July 2022, respectively. Chlorophyll fluorescence indicated the presence of stress in the coastal sand dune environment. The net photosynthesis rate (PN) and Y(II) were highest in June in the coastal sand dune environment and July in the pot environment. In August and September, Y(NPQ) increased in the plants in the coastal sand dune environment, showing their photoprotective mechanism. Chlorophyll a and b contents in the pot plant leaves were higher than those in the coastal sand dune plant leaves; however, chlorophyll-a/b ratio was higher in the coastal sand dune plant leaves than in the pot plant leaves, suggesting a relatively high photosynthetic efficiency. Carotenoid content in the coastal sand dune plant leaves was higher in August and September 2022 than that in the pot plant leaves. Leaf water and soluble carbohydrate contents of the coastal sand dune plant leaves decreased in September 2022, leading to rapid leaf abscission. Diurnal variations in photosynthesis and chlorophyll fluorescence in both environments showed peak activity at 12:00 hour; however, the coastal sand dune plants had lower growth rates and Y(II) than the pot plants. Plants in the coastal sand dunes had higher leaf water and ion contents, indicating that they adapted to water stress through osmotic adjustments. However, plants growing in the coastal sand dunes exhibited reduced photosynthetic activity and accelerated decline due to seasonal temperature decreases. These findings demonstrate the adaptation mechanisms of V. rotundifolia to water stress, poor soils, and high temperature conditions in coastal sand dunes. Conclusions: The observed variations indicate the responses of the V. rotundifolia to environmental stress, and may reveal its survival strategies and adaptation mechanisms to stress. The results provide insights into the ecophysiological characteristics of V. rotundifolia and a basis for the conservation and restoration of damaged coastal sand dunes.

Effects of Ultraviolet-B Radiation on Growth and Photosynthesis in Cucumber Primary Leaves

  • Kim, Hyo-Jin;Kim, Tae-Yun;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1093-1101
    • /
    • 2006
  • In the present study we studied the growth, photosynthetic traits and protective mechanisms against oxidative stress in the primary loaves of cucumber (Cucumis sativus L.) seedlings with or without UV-B treatment. Cucumber seedings were irradiated with UV-B for 10 days in environment-controlled growth chambers. The primary leaves irradiated with UV-B showed reduction in leaf length and decreased biomass production. The reduced biomass production seemed to be due to a negative effect of UV-B radiation on the photosynthetic process. Changes in chemical properties of leaf, such as chi a/b ratio affected photosynthesis. UV-B significantly affected chl b content compared with chi a in the light harvesting complex resulting reduced photosynthetic activity Fv/Fm decreased with an UV-B stress, suggesting that the photosynthetic apparatus, and particularly, PS II was damaged under UV-B stress. Malondialdehyde(MDA) concentration which represents the state of membrane lipid peroxidation Increased significantly under UV-B stress confirming an oxidative stress. UV-B exposure with SA solution(0.1-1.0 mM) can partially ameliorated some of the detrimental effects of UV-B stress. Leaf injuries including loss of chlorophyll and decreased ratio of Fv/Fm were reduced with combined application of UV-B and SA. ABA and JA showed similar mode of action in physiological effects on photosynthetic activities though the levels were lower than those from SA treated plants. Chloroplast ultrastructure was also affected by UV-B exposure. The thickness of leaf tissue components decreased and the number of grana and thylakoids was reduced in chloroplast applied UV-B or SA alone. At combined stress granal and stromal thylakoids were less affected. The leaves under combined stress acquired a significant tolerance to oxidative stress. From these results, it can be suggested that SA may have involved a protective role against UV-B induced oxidative damage.

Diversity and Function of Retinal-binding Protein in Photosynthetic Microbes

  • Jung, Kwang-Hwan
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.64-66
    • /
    • 2005
  • Photosynthetic microbes possess a wealth of photoactive proteins including chlorophyll-based pigments, phototropin-related blue light receptors, phytochromes, and cryptochromes. Surprisingly, recent genome sequencing projects discovered additional photoactive proteins, retinal-based rhodopsins, in cyanobacterial and algal genera. Most of these newly found rhodopsin genes and retinal synthase have not been expressed and their functions are unknown. Analysis of the Anabaena and Chlamyrhodopsin with retinal synthase revealed that they have sensory functions, which, based on our work with haloarchaeal rhodopsins, may use a variety of signaling mechanisms. Anabaena rhodopsin is believed to be sensory, shown to interact with a soluble transducer and the putative function is either chromatic adaptation or circadian rhythm. Chlamydomonas rhodopsins are involved in phototaxis and photophobic responses based on electrical measurements by RNAi experiment. In order to analyze the protein, we developed a sensory rhodopsin expression system in E. coli. The opsin in E. coil bound endogenous all-trans retinal to form a pigment and can be observed on the plate. Using this system we could identify retinal synthase in Anabaena PCC 7120. We conclude that Anabaena D475 dioxygenase functions as a retinal synthase to the Anabaena rhodopsin in the cell.

  • PDF

Color Sensing and Signal Transmission Diversity of Cyanobacterial Phytochromes and Cyanobacteriochromes

  • Villafani, Yvette;Yang, Hee Wook;Park, Youn-Il
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.509-516
    • /
    • 2020
  • To perceive fluctuations in light quality, quantity, and timing, higher plants have evolved diverse photoreceptors including UVR8 (a UV-B photoreceptor), cryptochromes, phototropins, and phytochromes (Phys). In contrast to plants, prokaryotic oxygen-evolving photosynthetic organisms, cyanobacteria, rely mostly on bilin-based photoreceptors, namely, cyanobacterial phytochromes (Cphs) and cyanobacteriochromes (CBCRs), which exhibit structural and functional differences compared with plant Phys. CBCRs comprise varying numbers of light sensing domains with diverse color-tuning mechanisms and signal transmission pathways, allowing cyanobacteria to respond to UV-A, visible, and far-red lights. Recent genomic surveys of filamentous cyanobacteria revealed novel CBCRs with broader chromophore-binding specificity and photocycle protochromicity. Furthermore, a novel Cph lineage has been identified that absorbs blue-violet/yellow-orange light. In this minireview, we briefly discuss the diversity in color sensing and signal transmission mechanisms of Cphs and CBCRs, along with their potential utility in the field of optogenetics.

Effect of Calcium Chloride (CaCl2) on the Characteristics of Photosynthetic Apparatus, Stomatal Conductance, and Fluorescence Image of the Leaves of Cornus kousa (염화칼슘 처리가 산딸나무 잎의 광합성 기구, 기공전도도 및 형광이미지 특성에 미치는 영향)

  • Sung, Joo-Han;Je, Sun-Mi;Kim, Sun-Hee;Kim, Young-Kul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 2009
  • Deicing salt is used to melt snow and ice on the road for traffic safety during the winter season, which accumulates in the roadside vegetation and induces visible injuries. The damage may accelerate particularly when it coincides with early spring leaf out. In order to better understand the response mechanisms, C. kousa (3-year-old) was irrigated twice prior to leaf bud in a rhizosphere with solutions of 0.5, 1.0, and 3.0% calcium chloride ($CaCl_2$) concentration, that were made by using an industrial $CaCl_2$ reagent practical deicing material in Seoul. Physiological traits of the mature leaves were progressively reduced by $CaCl_2$ treatment, resulting in reductions of total chlorophyll contents, chlorophyll a:b, photosynthetic rate, quantum yield, stomatal conductance, $F_V/F_M$, and NPQ. On the contrary, light compensation point and dark respiration were increased at high $CaCl_2$ concentration. A decrease in intercellular $CO_2$ concentration by stomatal closure first resulted in a reduced photosynthetic rate and then was accompanied by low substance metabolic rates and photochemical damage. Based on the reduction of physiological activities at all treatments ($CaCl_2$ 0.5%, 1.0%, and 3.0%), C. kousa was determined as one of the sensitive species to $CaCl_2$.

REPRESSION OF Lhcb GENES FOR CHLOROPHYLL a/b-BINDING PROTEINS UNDER HIGH-LIGHT CONDITIONS IN Chlamydomonas

  • Haruhiko Teramoto;Akira Nakamori;Jun Minagawa;Ono, Taka-aki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.373-375
    • /
    • 2002
  • Lhcb genes encoding light-harvesting chlorophyll-a/b binding (LHC) proteins of photosystem (PS) II were comprehensively characterized using the expressed sequence tag (EST) databases in the green alga, Chlamydomonas reinhardtii. The gene family was composed of eight Lhcb genes including four new genes, which were isolated and sequenced. The effects of light intensity on the levels of mRNAs accumulation of multiple Lhcb genes were studied under various conditions. The results indicate that Lhcb genes are coordinately regulated in response to light conditions, and repressed when the input light energy exceeded the requirement for $CO_2$ assimilation. The effects of high light on the expression of the Lhcb genes observed in the presence of an electron transport inhibitor, DCMU, and in mutants deficient in photosynthetic reaction centers suggest the presence of two alternative mechanisms for regulating the genes expression under high-light conditions.

  • PDF

Characterization of LexA-mediated Transcriptional Enhancement of Bidirectional Hydrogenase in Synechocystis sp. PCC 6803 upon Exposure to Gamma Rays

  • Kim, Jin-Hong;Lee, Min Hee;Kim, Ji Hong;Moon, Yu Ran;Cho, Eun Ju;Kim, Ji Eun;Lee, Choon-Hwan;Chung, Byung Yeoup
    • Rapid Communication in Photoscience
    • /
    • v.1 no.1
    • /
    • pp.21-24
    • /
    • 2012
  • Influence of gamma rays on the cyanobacterium Synechocystis sp. PCC 6803 cells was investigated in terms of a bidirectional hydrogenase, which is encoded by hoxEFUYH genes and responsible for biohydrogen production. Irradiated cells revealed a substantial change in stoichiometry of photosystems at one day after gamma irradiation at different doses. However, as evaluated by the maximal rate of photosynthetic oxygen evolution, maximal photochemical efficiency of photosystem II, and chlorophyll content, net photosynthesis or photosynthetic capacity was not significantly different between the control and irradiated cells. Instead, transcription of hoxE, hoxH, or lexA, which encodes a subunit of bidirectional hydrogenase or the only transcriptional activator, LexA, for hox genes, was commonly enhanced in the irradiated cells. This transcriptional enhancement was more conspicuously observed immediately after gamma irradiation. In contrast, hydrogenase activities were found to somewhat lower in the irradiated cells. Therefore, we propose that transcription of hox genes should be enhanced by gamma irradiation in a LexA-mediated and possibly photosynthesis-independent manner and that this enhancement might not induce a subsequent increase in hydrogenase activities, probably due to the presence of post-transcriptional and/or post-translational regulatory mechanisms.