• Title/Summary/Keyword: photosynthesis concepts

Search Result 12, Processing Time 0.035 seconds

How the Science Gifted Connect and Integrate Science Concepts in the Process of Problem Finding (과학영재들이 문제발견 과정에서 나타내는 과학개념 연결방식과 융합적 사고의 특징)

  • Park, Mi-jin;Seo, Hae-Ae
    • Journal of Science Education
    • /
    • v.42 no.2
    • /
    • pp.256-271
    • /
    • 2018
  • The study aimed to investigate how the science gifted connect and integrate science concepts in the process of problem finding. Research subject was sampled from 228 applicants for a science gifted education center affiliated with a university in 2015. A creative problem solving test (CPST) in science, which administered as an admission process, was utilized as a reference to sample two groups. Sixty-seven students from top 30% in test scores were selected for the upper group and 64 students from bottom 30% in test scores were selected for the lower group. The CPST, which was developed by researchers, included one item about how to connect two science concepts among eight science concepts, sound, electricity, weight, temperature, respiration, photosynthesis, weather, and earthquake extracted from elementary science curriculum. As results, there were differences in choosing two concepts among four science major areas. The ways of connecting science concepts were characterized by three categories, relation-based, similarity-based, and dissimilarity-based. In addition, relation-based was characterized by attributes, means, influences, predictions, and causes; similarity-based was by attributes, objects, scientific principles, and phenomena, and dissimilarity-based was by parallel, resource, and deletion. There were significant (p<.000) differences in ways of connecting science concepts between the upper and the lower groups. The upper group students preferred connecting science concepts of inter-science subjects while the lower group students preferred connecting science concepts of intra-science subject. The upper group students showed a tendency to connect the science concepts based on similarity. In contrast, the lower group students frequently showed ways of connecting the science concepts based on dissimilarity. In particular, they simply parallelled science concepts.

The Conceptions of Homeostasis, Classification of Animals and Plants, and Food Production in Plants of Students and The Teacher Factor as a Possible Source of Students' Misconception (항상성, 동.식물 분류, 식물의 양분생산에 대한 학생의 개념 조사와 오개념 형성 원인으로써 교사 요인의 분석)

  • Kim, Soo-Mi;Chung, Young-Lan
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.3
    • /
    • pp.261-271
    • /
    • 1997
  • This study evaluates on students' understanding and misunderstanding of homeostasis, classification of animals and plants, and food production in plants, and analyzes the teacher factor as a possible source of students' misconception. A total number of 863 students and 47 biology teachers at the middle and high school were randomly selected. Students' conceptions and misconceptions were measured with concept evaluation statements (CES) which was translated into Korean by author. The CES was developed and validated by Simson and Marek (1988). Teacher's misconceptions were investigated the way in which teachers marked students' work. The supposed answer given to the teachers to mark was based on misconceptions held by students tested in concept evaluation statements. The results of this study are as follows : 1. 0% of 7th Grade students, 4.5% of 9th Grade students and 5.4% of 11th Grade students understood homeostasis. There was a significant difference at the level of students' understanding of homeostasis according to schools and gender(P<0.05). Many students had a tendency of understanding the conception of the homeostasis by experiences and unscientific use of everyday language rather than a scientific concept. 2. 0.4% of 7th Grade students, 3.1% of 9th Grade students and 2.9% of 11th Grade students understood classification of animals and plants. There was a significant difference at the level of students' understanding of classification of animals and plants according to schools and gender(P<0.05). Students classified animals and plants through personal experiences and observations instead of trying to classify through microscopic analysis of animals and plants cell. 3. 1.2% of 7th Grade students, 10.3% of 9th Grade students and 19.4% of 11th Grade students understood food production in plants. There was a significant difference at the level of students' understanding of food production in plants according to schools and gender(P<0.05). Students had a misconception that food production in plants was done by an absorption of nutrients from soil not by photosynthesis. 4. A large proportion of teachers surveyed in this study appear to have misconceptions about homeostasis (38.1%), classification of animals and plants (34.1%), food production in plants (40.4%). The male teachers had. more misconceptions than female teachers(P<0.05). However, they didn't show any significant differences according to schools and teaching experience(P<0.05). 5. According to the investigation of teachers' perception, 29.8% of the teachers acknowledged that they might be a cause for students' misconceptions. This study shows that 38.3% of teachers did not understand the analyzed biological concepts precisely. By comparing the data of students and teachers, it turned out that teachers participate in the students' misconceptions. And teachers themselves acknowledged that students' misconceptions could be caused by them. Therefore. teachers' right understanding of fundamental biological concepts should precede to students' biology education. New training programs for biology teachers seem to be urgent.

  • PDF