• Title/Summary/Keyword: photosentizied oxidation

Search Result 1, Processing Time 0.02 seconds

Effects of Riboflavin-photosensitized Oxidation on the Formation of Volatile Compounds in Oleic Acid Model Systems (리보플라빈 광산화에 의한 올레산 모델시스템에서 휘발성 물질 발생연구)

  • Yang, Seung-Ok;Chang, Pahn-Shick;Lee, Jae-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.717-722
    • /
    • 2005
  • Formation mechanisms of light-induced volatile compounds were studied using riboflavin-photosensitized oleic acid model systems. Volatile compounds in model systems with 4000 ppm riboflavin at $35^{\circ}C$ under light or in the dark for 39 hr were isolated and identified by a combination of solid phase microextraction (SPME), gas chromatography (GC), and mass spectrometry (MS). Total volatiles in oleic acid with riboflavin under light for 13, 26, and 39 hr increased by 90, 190, and 270%, respectively, compared to those in oleic acid without riboflavin under light. Total volatiles in samples without riboflavin under light or samples with riboflavin in the dark were not significant in tested conditions (p>10.05). Riboflavin did not act as a photosensitizer when it was dispersed in oleic acid. Heptane, octane, heptanal, octanal, nonanal, and 2-nonenal were significantly increased in riboflavin-photosensitized samples compared to those in samples without riboflavin (p<0,05). Light-induced volatile compounds including heptanal and 2-nonenal from oleic acid could be explained using singlet oxygen oxidation, the formation mechanism of which were not understood using triplet oxygen oxidation. These results will help to understand volatile formation in oleic acid containing foods stored under light.