• 제목/요약/키워드: photoreaction-mechanisms

검색결과 3건 처리시간 0.023초

방향족 탄화수소 할로겐 유도체의 광촉매-광산화 (Photocatalytic-Photooxidation of Halogen Derivatives of Phenols in Aqueous Solution)

  • 김삼혁;권규혁;정오진
    • 한국환경과학회지
    • /
    • 제8권2호
    • /
    • pp.233-240
    • /
    • 1999
  • Industrial waste which highly loaded by halogenide phenols was photooxidized by laboratory-scale photooxidation of these organic impurities in the presence of aerotropic and titaniumdioxide as photocatalyst. The disapperance of organic compounds was determined as a function of the irradiation time. Some contaminants such as 2-chlorophenol, 2-bromphenol, 3-bromphenol, 4-bromphenol, 2,4-dibromophenol and 2,6-dibromophenol were photodegraded separately to obtain information on the reaction rates, reactivities, and reaction mechanisms of the photooxidation, and on the stoichiometric correlation between organic reactant and inorganic products concentration in the course of the photocatalytic photoreaction.

  • PDF

Infrared Multiphoton Dissociation of $CHCl_2F$: Reaction Mechanisms and Product Ratio Dependence on Pressure and Laser Pulse Energy

  • Song, Nam-Woong;Lee, Won-Chul;Kim, Hyong-Ha
    • Journal of Photoscience
    • /
    • 제12권2호
    • /
    • pp.101-107
    • /
    • 2005
  • Infrared multiphoton dissociation of $CHCl_2F$ was studied using $CO_2$ laser excitation. Three products, $C_2Cl_2F_2$, $C_2ClF_3$, and $C_2HClF_2$, were identified by the analysis of the gas mixture from the photoreaction of $CHCl_2F$. The dependence of the reaction probability on added Ar gas pressure and excitation laser pulse energy was investigated. At low pressure (< 10 torr), the reaction probability increased as Ar pressure increased due to the rotational hole-filling effect, while it diminished with the increase of Ar pressure at high pressure (> > 20 torr) due to the collisional deactivation. The ratio of two products $(C_2ClF_3/C_2Cl_2F_2)$ decreased at low pressure (< 10 torr) and increased at high pressure (> 20 torr) with the increase of Ar pressure. The log-log plot of the reaction probability vs. laser pulse energy (${\\phi}$) was found to have a linear relationship, and its slope decreased as the added Ar pressure was increased. The reaction mechanisms for product formation have been suggested and validated by experimental evidences and considering the energetics. Fluorine-chlorine exchange reaction in the intermediate complex has been suggested to explain the formation of $C_2ClF_3$.

  • PDF

지방족 탄화수소의 할로겐 유도체 수용액의 광촉매-광분해 (Photodegradation of Halogen Derivatives of Aliphatic Hydrocarbon in Aqueous Photocatalytic Suspensions)

  • 전진;정학진;김해진;김삼혁
    • 한국환경과학회지
    • /
    • 제6권1호
    • /
    • pp.75-88
    • /
    • 1997
  • The rates of photodegradation, reactivities, and mechanisms of photooxidation for the aqueous solution containing with halogen derivatives of aliphatic hydrocarbons have been discussed with respect to the kinds of photocatalysts, concentration of photocatalytlc suspensions, strength of radiant power, time of illumination, changes of pH of substrate solution, wavelength of radiation, and pressure of oxygen gas saturated In the solution. These aqueous solutions suspended with 0.5 $gL^{-1}$ $TiO_2$ powder have been photodecomposed in the range of 100 and 93.8% per 1 hour if it is illuminated with wavelength (λ $\geq$ 300nm) produced from Xe-lamp(450W). The photocatalytic abilities have been increased In the order of $Fe_2O_3$ < CdS < $CeO_2$ < Y_2O_3$ <$TiO_2$, and rates of photodegradation for the solution have maldmum values in the condition of pH 6 ~ 8 and 3 psi-$O_2$ gL^{-1}$. These rates for the Photoolddation Per 1 hour were dependent on the size of molecular weight and chemical bonding for organic halogen compounds and the rates of photodegadation were increased in the order of $C_2H_5Br$ < CH_2Br_2$ < C_5H_11Cl C_2H_4Cl_2$ < tracts-$C_2H_2Cl_2$ < cis-C_2H_2Cl_2$ The T_{1/2}$ and t99% for these solutions were 5~21 and 40~90 minutes. respectively, and these values were coincided with Initial reaction kinetics(ro). It was found that reaction of photodegradation has the pseudo first-order kinetics controlled by the amount of $h^+_{VB}$ diffused from a surface of photocatalysts.

  • PDF