• Title/Summary/Keyword: photonic crystal (PhC)

Search Result 3, Processing Time 0.024 seconds

Photonic sensors for micro-damage detection: A proof of concept using numerical simulation

  • Sheyka, M.;El-Kady, I.;Su, M.F.;Taha, M.M. Reda
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.483-494
    • /
    • 2009
  • Damage detection has been proven to be a challenging task in structural health monitoring (SHM) due to the fact that damage cannot be measured. The difficulty associated with damage detection is related to electing a feature that is sensitive to damage occurrence and evolution. This difficulty increases as the damage size decreases limiting the ability to detect damage occurrence at the micron and submicron length scale. Damage detection at this length scale is of interest for sensitive structures such as aircrafts and nuclear facilities. In this paper a new photonic sensor based on photonic crystal (PhC) technology that can be synthesized at the nanoscale is introduced. PhCs are synthetic materials that are capable of controlling light propagation by creating a photonic bandgap where light is forbidden to propagate. The interesting feature of PhC is that its photonic signature is strongly tied to its microstructure periodicity. This study demonstrates that when a PhC sensor adhered to polymer substrate experiences micron or submicron damage, it will experience changes in its microstructural periodicity thereby creating a photonic signature that can be related to damage severity. This concept is validated here using a three-dimensional integrated numerical simulation.

나노임프린트 리소그래피를 이용한 SOI 광결정 슈퍼프리즘 제작

  • Choe, Chun-Gi;Han, Yeong-Tak;O, Sang-Sun
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.319-320
    • /
    • 2007
  • We report on the fabrication of two-dimensional Silicon On Insulator (SOI) photonic crystal (PhC) superprism. To optimize the design of 2-D SOI PhC superprism, the photonic band structures (TE-polarization) for triangular lattices and the dispersion surfaces were calculated and analyzed by the plane wave expansion method. Dense 2-D SOI PhC superprism nanostructures with taper input and output waveguide microstructures were successfully fabricated by nanoimprint lithography, followed by inductively coupled plasma (ICP) etching.

  • PDF

Fabrication of Wafer-scale Polystyrene (2+1) Dimensional Photonic Crystal Multilayers Via the Layer-by-layer Scooping Transfer Technique

  • Do, Yeong-Rak;O, Jeong-Rok;Lee, Gyeong-Nam
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.11.1-11.1
    • /
    • 2011
  • We have developed a simple synthetic method for fabricating a wafer-scale colloidal crystal film of 2D crystals in a 1D stack based on a combination of two simple processes : the self-assembly of polystyrene (PS) nanospheres at the water-air interface and the layer-by-layer (LbL) scooping transfer technique. The main advantage of this approach is that it allows excellent control of the thickness (at a layer level) of the crystals and the formation of a vertical crack-free layer over a wafer-scale (4 inch). We investigate the optical and morphological properties of the PhC multilayers fabricated using various mono-sized colloidal crystals (250, 300, 350, 420, 580, 720, and 850 nm), and mixed binary colloidal crystals (300/350 and 250/350 nm).

  • PDF