• Title/Summary/Keyword: photon conversion

Search Result 110, Processing Time 0.031 seconds

실리콘 박막 태양전지를 위한 CdSe계 양자점 광변환구조체

  • Sin, Myeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.135.2-135.2
    • /
    • 2014
  • Photon conversion technology for thin film solar cells is reviewed. The high-energy photons which are hardly absorbed in solar cells can be transformed the low energy photon by the photon conversion process such as down conversion or down shift, which can improve the solar cell efficiency over the material limit. CdSe-based quantum dot materials commonly used in LED can be used as the photon conversion layer for Si thin film solar cells. The photon conversion structure of CdSe-based quantum dot for Si thin film solar cells will be presented and the pros and cons for the Si thin film solar cells integrated with the photon conversion layers will be discussed.

  • PDF

Effect of two-photon spatial bunching on single photon detection rates (광자쌍의 뭉침현상이 단일계수에 미치는 영향)

  • 김헌오;신하림;박구동;김태수
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.573-577
    • /
    • 2003
  • We report an effect of photon pairs on single-photon detection rates, while Hong-Ou-Handel's two-photon interference experiment is performed with photons produced in noncollinear type-I parametric down-conversion. Photon pairing behavior or spatial bunching is measured and shown to cause a decrease in the single photon counting rate. Such a dip is found to result from the fact that the single-photon timing resolution of photodetectors is much longer compared to the time interval between the two photons incident on the single-photon detector.

Dispersive Broadening of Two-photon Wave Packets Generated via Type-I and Type-II Spontaneous Parametric Down-conversion

  • Hong, Kang-Hee;Baek, So-Young;Kwon, Osung;Kim, Yoon-Ho
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1650-1656
    • /
    • 2018
  • Photons generated via spontaneous parametric down-conversion (SPDC) have broad spectrums and suffer from dispersive broadening of the temporal wave packets when they are transmitted through dispersive media. In this paper we theoretically and experimentally study the detailed amount of the temporal broadening of the two-photon wave packets generated via both type-I and type-II SPDC with ${\beta}-BaB_2O_4$ of various lengths, by transmitting them through optical fibers. We interpret the results with respect to the spectral properties of the two-photon wave packets. We believe that our results will contribute to implementing protocols involving long-range distributions of photon pairs.

Simulation of Leggett-Garg Inequalities Using a Heralded-single-photon Source (예고된 단일 광자 광원을 이용한 레겟-가르그 부등식 모사)

  • Kim, Su Hyun;Moon, Han Seb
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.1
    • /
    • pp.29-33
    • /
    • 2021
  • We have experimentally simulated the violation of the Leggett-Garg inequality (LGI) using a heralded-single-photon source via spontaneous parametric down-conversion (SPDC) in a periodically poled potassium titanyl phosphate (PPKTP) crystal. We measured the polarization fringe as a function of the angle of the linear polarization of the photons, and analyzed the LGI according to n measurement. Simulation results for LGI based on the polarization of the heralded single photon were in good agreement with theoretical calculations.

Using Sunshine Duration to Estimate Photosynthetic Photon Flux Density at Taegu Korea (일조시간을 이용한 대구지방 광합성 광자선속밀도의 추정)

  • Suh, KyeHong
    • The Korean Journal of Ecology
    • /
    • v.19 no.1
    • /
    • pp.65-70
    • /
    • 1996
  • The daily photosynthetic photon flux density incident on a horizontal surface was estimated with sunshine duration through daily global radiation at Taegu in Korea. The constant and coefficient of $\AA$ngstrom equation for global radiation were calculated as 0.1763 and 0.5012, respectively. The conversion factor from daily global radiation to daily photosynthetic photon flux density was determined as 2.2359.

  • PDF

Hanbury brown-Twiss effect in a two-photon interference experiment (광자쌍을 이용한 Hanbury Brown-Twiss 실험)

  • Kim, Heon-Oh;Ko, Jeong-Hoon;Park, Goo-Dong;Kim, Tae-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.130-134
    • /
    • 2003
  • We present experimental observations of two-photon spatial bunching effect in a two-photon interference experiment by using the photon pairs produced by parametric down-conversion and the Hong-Ou-Mandel interferometer. We show that this pairing behavior is observed by coincidence detection, but gives a negligible effect for a single count.

Proton Generation with 3-% Energy Conversion Efficiency (3% 에너지 변환효율을 가진 양성자 발생)

  • Choe, Il-U;Kim, Cheol-Min;Jeong, Tae-Mun;Yu, Tae-Jun;Seong, Jae-Hui;Lee, Seong-Gu;Hafz, N.;Bae, Gi-Hong;No, Yeong-Cheol;Go, Do-Gyeong;Lee, Jong-Min;Nishiuchi, M.;Daido, H.;Yogo, A.;Orimo, S.;Ogura, K.;Ma, J.;Sagisaka, A.;Mori, M.;Pirozhkov, A.S.;Kiriyama, H.;Bulanov, S.V.;Esirkepov, T.Zh.;Oishi, Y.;Nemoto, K.;Nagatomo, H.;Nagai, K.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.155-156
    • /
    • 2008
  • PDF

Determination of energy resolution for a NaI(Tl) detector modeled with FLUKA code

  • Demir, Nilgun;Kuluozturk, Zehra Nur
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3759-3763
    • /
    • 2021
  • In this study, 3" × 3" NaI(Tl) detector, which is widely used in gamma spectroscopy, was modeled with FLUKA code, and calculations required to determine the detector's energy resolution were reported. Photon beams with isotropic distribution with 59, 81, 302, 356, 511, 662, 835, 1173, 1275, and 1332 keV energy were used as radiation sources. The photon pulse height distribution of the NaI(Tl) without influence of its energy resolution obtained with FLUKA code has been converted into a real NaI(Tl) response function, using the necessary conversion process. The photon pulse height distribution simulated in the conversion process was analyzed using the ROOT data analysis framework. The statistical errors of the simulated data were found in the range of 0.2-1.1%. When the results, obtained with FLUKA and ROOT, are compared with the literature data, it is seen that the results are in good agreement with them. Thus, the applicability of this procedure has been demonstrated for the other energy values mentioned.

Enhance photoelectric efficiency of PV by optical-thermal management of nanofilm reflector

  • Liang, Huaxu;Wang, Baisheng;Su, Ronghua;Zhang, Ao;Wang, Fuqiang;Shuai, Yong
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.475-485
    • /
    • 2022
  • Crystalline silicon photovoltaic cells have advantages of zero pollution, large scale and high reliability. A major challenge is that sunlight wavelength with photon energy lower than semiconductor band gap is converted into heat and increase its temperature and reduce its conversion efficiency. Traditional cooling PV method is using water flowing below the modules to cool down PV temperature. In this paper, the idea is proposed to reduce the temperature of the module and improve the energy conversion efficiency of the module through the modulation of the solar spectrum. A spectrally selective nanofilm reflector located directly on the surface of PV is designed, which can reflect sunlight wavelength with low photon energy, and even enhance absorption of sunlight wavelength with high photon energy. The results indicate that nanofilm reflector can reduce spectral reflectivity integral from 9.0% to 6.93% in 400~1100 nm wavelength range, and improve spectral reflectivity integral from 23.1% to 78.34% in long wavelength range. The nanofilm reflector can reduce temperature of PV by 4.51℃ and relatively improved energy conversion efficiency of PV by 1.25% when solar irradiance is 1000 W/m2. Furthermore, the nanofilm reflector is insensitive in sunlight's angle and polarization state, and be suitable for high irradiance environment.

Single Photon Interference Experiments in a Sagnac-type Mach-Zehnder Interferometer (Sagnac 형태로 변형된 Mach-Zehnder 간섭계를 이용한 단일광자 간섭실험)

  • Um, Jayoon;Kim, Yong Soo;Kim, Heonoh
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.2
    • /
    • pp.71-76
    • /
    • 2012
  • A Sagnac-type Mach-Zehnder interferometer(SMZI) is a very stable instrument with respect to phase drift because all optical paths can share common optical components. We have observed very stable interference fringes in single photon interference experiments with an extremely attenuated laser beam, and with heralded single photons prepared from polarization correlated photon pairs in type-II spontaneous parametric down-conversion. The phase stability is measured to be about ${\pm}0.18$ rad for the SMZI, in contrast, conventional MZI showed the phase fluctuation of around ${\pm}1.02$ rad.