• Title/Summary/Keyword: photolyase

Search Result 6, Processing Time 0.03 seconds

Ultraviolet-B radiation sensitivities in rice plant: cyclobutane pyrimidine dimer photolyase activities and gene mutations

  • Hidema, Jun;Kumagai, Tadashi
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2004.10a
    • /
    • pp.29-34
    • /
    • 2004
  • Reduction in stratospheric ozone layer increases the amount of ultraviolet-B radiation (UVB: 280-320 nm) that reaches the earth ’ s surface. UVB radiationcan damage plants, resulting in decrease in growth and productivity. UVB-augmentation studies have indicated that the sensitivity to UVB radiation in plants varies among the species and cultivars. However. there are no definitive answers for the mechanisms of UVB-resistance in higher plants and for bioengineering design and development of UVB-tolerant plants. We have been studying physiological and biochemical aspects of the effects of UVB radiation on growth and yield of rice COryza sativa LJ. aiming to clarify the mechanism of resistance to UVB radiationin rice. At this meeting. weintroduce our research as followed: (1) supplementary UVB radiation has inhibitory effects on the growth. yield and grain development of rice; (2) UVB sensitivity of rice varies widely among cultivars; (3) among Japanese rice cultivars. Sasanishiki. a leading variety in northeast Japan. is more resistant to UVB. while Norin 1. a progenitor of Sasanishiki. is less resistant; (4)UV-sensitive Norin 1 cultivar is deficient in photorepair of UVB-induced cyclobutane pyrimidine dimer (CPD). and this deficiency results from one amino acid residue alteration of CPD photolyase. These results suggest that spontaneously occurring mutation in CPD photolyase gene could lead to difference in UVB sensitivity in rice. and that CPD photolyase might be a useful target for improving UVB-sensitivity in rice by selective breeding or bioengineering of UVB-tolerant rice.

  • PDF

Differences in the Amino Acid Sequences of CPD Photolyases of UV-sensitive and UV-resistant Rice Cultivars

  • Teranishi, Mika;Hidema, Jun;Fujino, Takana;Hirouchi, Tokuhisa;Yamamoto, Kazuo;Kumagai, Tadashi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.329-331
    • /
    • 2002
  • There is a difference in the inhibitory effects to supplemental UVB (wavelengths 280 to 320 nm) among Japanese rice (Oryza sativa L.), the cultivar Norin I is less resistant while the cultivar Sasanishiki is resistant. UVB induces photodamage in DNA. Cyclobutane pyrimidine dimer (CPD) is a major UV-induced DNA lesion. Photorepair, which is mediated by photolyase, is the major pathway in plants for repairing CPD. We have analyzed CPD induction and repair in Sasanishiki and its close relative Norin I using alkaline agarose gel electrophoresis. Norin I is deficient in CPD photoreactivation and excision, thus UV sensitivity correlates with deficient dimer repair [I]. The photorepair deficiency in Norin I results from a functionally altered photolyase with a photoflash analysis [2]. In this paper, we examined the UVB-sensitivity of several other UV-sensitive and -resistant cultivars and found that the CPD photolyase activity was deficient in UV-sensitive ones. It was also evident that there was a variation in the deduced amino acid sequences of CPD photolyases of the UV-sensitive and -resistant cultivars, whereas each deduced amino acid sequence of the UV-sensitive cultivars and of the UV-resistant ones was the same. These results suggest that the difference in the CPD photolyases of UV-sensitive and -resistant rice might be due to the structural alteration of CPD photolyase.

  • PDF

Transcriptional Regulation of a DNA Repair Gene in Saccharomyces cerevisiae

  • Jang, Yeon-Kyu;Sancar, Gwen-B.;Park, Sang-Dai
    • Proceedings of the Zoological Society Korea Conference
    • /
    • 1998.10b
    • /
    • pp.113-113
    • /
    • 1998
  • In Saccharomyces cerevisiae UV irradiation and a variety of chemical DNA -damaging agents induce the transcription of specific genes, including several involved in DNA repair. One of the best characterized of DNA -damage inducible genes is PHRI, which encodes the apoenzyme for DNA photolyase. Basal-level and damage-induced expression of PHRI require an upstream activation sequence, UASPHRI. Here we report the identification of the UlvIE6 gene of S. cerevisiae as a regulator of UASPHRl activity. Surprisingly, the effect of deletion of UME6 is growth phase dependent. In wild-type cells PHRI is induced in late exponential phase, concomitant with the initiation of glycogen accumulation that precedes the diauxic shift. Deletion of UNIE6 abolishes this induction, decreases the steady-state concentration of photolyase molecules and PHRI mRNA, and increases the UV sensitivity of a rad2 mutant. The results suggest that UM E6 contributes to the regulated expression of a subset of damage-responsive genes in yeast. Furthermore, the upstream repression sequence, URSPHRI, is required for repression and damage-induced expression of PHRl. Here we show identification of YER169W and YDR096W as putative regulators acting through $URS_{PHRI}$. These open reading frames were designated as RPHI (YERl69W) and RPH2 (YDR096W) indicating regulator of PHRI. Simultaneous disruption of both genes showed a synergistic effect, producing a four-fold increase in basal level expression and a similar decrease m the induction ratio following treatment of methyl methanesulfonate(MMS). Mutation of the sequence ($AG_4$) bound by Rphlp rendered the promoter of PHRI insensitive to changes in RPHI or RPH2 status. The data suggest that RPHI and RPH2 act as damage-responsive negative regulators of PHRI. Surprisingly, the sequence bound by Rphlp in vitro is found to be $AG_4$ which is identical to the consensus binding site for the regulators Msn2p and Msn4p involved in stress-induced expression. Deletion of MSN2 and MSN4 has little effect on the induction$.$ ratio following DNA damage. However, all deletions led to a significant decrease in basal-level and induced expression of PHRI. These results imply that MSN2 and MSN4 are positive regulators of P HRI but are not required for DNA damage repression. [Supported by grant from NIH]om NIH]

  • PDF

Physiological and Biochemical Analyses of Rice Sensitivities to UVB Radiation

  • Hidema, Jun;Kumagai, Tadashi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.162-165
    • /
    • 2002
  • Rice is widely cultivated in various regions throughout Asia. Over a five-year period, we investigated the effects of supplemental UVB radiation on the growth and yield of Japanese rice cultivars in the field. The findings of that study indicated that supplemental UVB radiation has inhibitory effects on the growth and grain development. Furthermore, we investigated the sensitivity to UVB radiation of rice cultivars of 5 Asian rice ecotypes, and found that rice cultivars vary widely in UVB sensitivity. The aim of our study is improving UVB resistance in plants by bioengineering or breeding programs. In order to make it, there is need to find the molecular origin of the sensitivity to UVB. Cyclobutane pyrimidine dimer (CPD) is major UV-induced DNA lesions. Plants possess two mechanisms to cope with such DNA damage. The first is the accumulation of UV-absorbing compounds. Our previous data showed that the steady-state CPD levels in leaves of rice grown under chronic radiation in any culture were not so greatly influenced by the increased UV-absorbing compounds content, although there was a significant positive correlation between the CPD levels induced by challenge UVB exposure and the UV-absorbing compounds content. The other is the repair of DNA damage. Photorepair is the major pathway in plants for repairing CPD. We found that the sensitivity to UVB could seriously correlate with the low ability in CPD photorepair in rice plants. These results suggest that photo lyase might be an excellent candidate for restoration by way of selective breeding or engineering in rice.

  • PDF

EARLY EVENTS OCCURRING DURING LIGHT SIGNAL TRANSDUCTION IN PLANTS AND FUNGI

  • Hasunuma, Kohji;Ogura, Yasunobu;Yabe, Naoto
    • Journal of Photoscience
    • /
    • v.5 no.2
    • /
    • pp.73-81
    • /
    • 1998
  • Light signals constitute major factors in regulating gene expression and morphogenesis in plants and fungi. Phytochrome A and B were well characterized red and far-red light receptors in plants. Red light signals increased the phosphorylation of 18 kDa protein, which was identified to be nucleoside diphosphate (NDP) kinase. The NDP kinase catalyzed autophosphorylation and had a protein kinase activity similar to MAP (mitogen activated protein) kinase. As candidates for blue light photoreceptors, cDNAs for CRY1 and CRY2 were isolated. The N-teminal regions of these proteins showed a high hornology to DNA photolyase. The 120 kDa protein first detected in Pisurn sativurn, which showed blue light induced phosphorylation was also detected in Arabidopsis thaliana. The 120 kDa protein was encoded by the nphl gene, which regulated positive phototropism of the plant. In Neurospora crassa, blue light irradiation of the membrane fraction prepared from roycelia stimulated the phosphorylation of the 15 kDa protein, which was also identifmd to be an NDP kinase. Recent progress in understanding early events in light signal transduction mainly in Pisum sativum Alaska, Arabidopsis thaliana and Neurospora crassa was summarized.

  • PDF