• 제목/요약/키워드: photogrammetric mapping and remote sensing

검색결과 11건 처리시간 0.029초

Digital Plotting with KOMPSAT-1 EOC Stereo Images using Digital Photogrammetric Workstation

  • Jeong, Soo;Kim, Youn-Soo;Lee, Ho-Nam
    • 대한원격탐사학회지
    • /
    • 제18권1호
    • /
    • pp.25-33
    • /
    • 2002
  • In 1799, Korea has become a country that holds Earth observation satellite in orbit as they had succeeded in the launch of KOPMSAT-1, the first Korean Earth observation satellite for the practical purpose. For the wide application of the satellite imagery, various application techniques are required, and topographic mapping is essential technique for the application in various fields. Moreover, considering that the main mission of the KOMPSAT-1 is to provide the satellite imagery for the mapping of Korean peninsula, the topographic mapping using KOMPSAT-1 EOC imagery is very significant. In this paper, we showed the possibility of digital plotting using KOMPSAT-1 EOC stereo images to produce topographic map. For the purpose, we implemented experimental stereo plotting using digital photogrammetric workstation and analyzed the procedure. As a result of this paper, we showed that some elements consist in 1:25,000 scale map can be plotted from KOMPSAT-1 Stereo images.

Development of New Photogrammetric Software for High Quality Geo-Products and Its Performance Assessment

  • Jeong, Jae-Hoon;Lee, Tae-Yoon;Rhee, Soo-Ahm;Kim, Hyeon;Kim, Tae-Jung
    • 대한원격탐사학회지
    • /
    • 제28권3호
    • /
    • pp.319-327
    • /
    • 2012
  • In this paper, we introduce a newly developed photogrammetric software for automatic generation of high quality geo-products and its performance assessment carried out using various satellite images. Our newly developed software provides the latest techniques of an optimized sensor modelling, ortho-image generation and automated Digital Elevation Model (DEM) generation for diverse remote sensing images. In particular, images from dual- and multi-sensor images can be integrated for 3D mapping. This can be a novel innovation toward a wider applicability of remote sensing data, since 3D mapping has been limited within only single-sensor so far. We used Kompsat-2, Ikonos, QuickBird, Spot-5 high resolution satellite images to test an accuracy of 3D points and ortho-image generated by the software. Outputs were assessed by comparing reliable reference data. From various sensor combinations 3D mapping were implemented and their accuracy was evaluated using independent check points. Model accuracy of 1~2 pixels or better was achieved regardless of sensor combination type. The high resolution ortho-image results are consistent with the reference map on a scale of 1:5,000 after being rectified by the software and an accuracy of 1~2 pixels could be achieved through quantitative assessment. The developed software offers efficient critical geo-processing modules of various remote sensing images and it is expected that the software can be widely used to meet the demand on the high-quality geo products.

PHOTOGRAMMETRIC PROCESSING OF HIGH MOUNTAINS IN NEPAL

  • Baral, Toya Nath
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.85-92
    • /
    • 2003
  • Application of traditional aerial survey technologies for topographic mapping purposes has a number of principal problems. The growing worldwide acceptance of digital orthophotos has understood this need. Many trekking and expedition teams are expecting digital orthophoto and consequently 3D animation of the highest peaks and possible trekking routes, camping sites and information on how difficult the routes may be. In recent years, inexpensive computers and advance of computer technologies contributed to the rapid development of digital photogrammetry (Dowman et al., 1992; Heipke, 1995). Successful implementation of digital photogrammetric workstations in mapping have been found in various disciplines (Chen et al., 1998; Skalet et al., 1992). This paper highlights the results of the conventional photogrammetry and the possible advantages of digital photogrammetry over these and also the problems, issues and implications during digital Photogrammetric processing of high mountainous region in Asia.

  • PDF

Rational Function Model Generation for CCD Linear Images and its Application in JX4 DPW

  • Zhao, Liping;Wang, Wei;Liu, Fengde;Li, Jian
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.387-389
    • /
    • 2003
  • Rational function model (RFM) is a universal sensor model for remote sensing image restitution. It is able to substitute for models of all known sensors. In this paper, RFM generation by CCD linear image models is described in detail. A principle of RFM-based 3D reconstruction and its implementation in JX4 DPW is also described. Experiments using IKONOS and SPOT5 images are carried out on JX4 DPW. Results show that RFM generated is feasible for photogrammetric restitution of CCD linear images.

  • PDF

DGPS/IMU-based Photogrammetry in China

  • Yingcheng, Li;Xueyou, Li;Jicheng, Zhao;Xunping, Gong;Tang, Liang
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1215-1220
    • /
    • 2003
  • People's Republic of China is one of the most rapidly developing countries in the world today. There is a great demand on highly actual and accurate spatial information of the whole country, especially of West China which becomes the focus of development of the Chinese government right now and in the next years, but where still not enough topographic maps are available. This raises great challenges to the surveying and mapping community in China. Facing the new challenges the Chinese Academy of Surveying and Mapping (CASM) started its pioneer work early 2002 to explore new techniques and technologies available today toward increasing the map productivity. With import of a CCNS/AEROcontrol system in November 2002 the first DGPS/IMU-based photogrammetric project in China was successfully accomplished jointly by CASM and the Germany-based companies IGI and Techedge. Two photogrammetric blocks of 1:4,000 and 1:20,000 photo scale, respectively, were flown in Anyang, China. Direct georeferencing and integrated sensor orientation were conducted. Results achieved were proven by using ground check points and compared with those of aerial triangulation. Orthophotos generated based on direct georeferencing shows the high efficiency and quality, and thus proved the promise of the new technology. Furthermore several DGPS/IMU-based photogammetric projects was accomplished one by one and a big project of more than 100,000 km2 in the Inner Mongolia will be started in August 2003. The paper presents experiences with DGPS/IMU-based photogrammetry in China. Results achieved in concrete projects are shown and evaluated. Politic and technical specialties in China are discussed. Conclusions outline the potential of DGPS/IMU-based photogrammetric production in China.

  • PDF

Topographic Mapping Using KOMPSAT Imagery

  • Lee, Ho-Nam;Seo, Hyun-Duck;Jung, Hyung-Sup
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.786-791
    • /
    • 2002
  • Mapping systems using Satellite Imagery has not been well-established compare to conventional Arial Photograph mapping systems. In order for satellite imagery to produce a stable quality of maps, it requires to follow the standard mapping procedures. In this satellite imagery study, we proposed four methods of mapping procedures. Mapping methods were established by generating trial maps and analyzing types of input data and functions of DPW (Digital Photogrammetric Workstation). On quantitative aspect, accuracy of each steps were measured by increasing 2 GCPs each time from the minimum of 6 GCPs. In DLT, with the minimum of 10 points, RMSE is 2 pixels at most. Besides that, interpretation and stereoscopic plotting using KOMPSAT-1 imagery and other simulated imagery was performed. The tests resulted that, for KOMPSAT-1 (6.6m) stereoscopic images, the possibility of interpretation is 44.79% and possibility of stereoscopic plotting is 43.75%. In the other hand, for simulated imagery (1m), the possibility of interpretation is 60.92% and possibility of stereoscopic plotting is 55.18%.

  • PDF

Direct Geo-referencing for Laser Mapping System

  • Kim, Seong-Baek;Lee, Seung-yong;Kim, Min-Soo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.423-427
    • /
    • 2002
  • Contrary to the traditional text-based information, 4S(GIS,GNSS,SIIS,ITS) information can contribute to the citizen's welfare in upcoming era. Recently, GSIS(Geo-Spatial Information System) has been applied and stressed out in various fields. As analyzed the data from GSIS arena, the position information of objects and targets is crucial and critical. Therefore, several methods of getting and knowing position are proposed and developed. From this perspective, Position collection and processing are the heart of 4S technology. We develop 4S-Van that enables real-time acquisition of position and attribute information and accurate image data in remote site. In this study, the configuration of 4S-Van equipped with GPS, INS, CCD and eye-safe laser scanner is shown and the merits of DGPS/INS integration approach for geo-referencing is briefly discussed. The algorithm of DGPS/INS integration fur determination of six parameters of motion is eccential in the 4S-Van to avoid or simplify the complicated computation such as photogrammetric triangulation. 4S-Van has the application of Laser-Mobile Mapping System for three-dimensional data acquisition that merges the texture information from CCD camera. The technique is also applied in the fields of virtual reality, car navigation, computer games, planning and management, city transportation, mobile communication, etc.

  • PDF

GENERATION OF TOPOGRAPHIC PRODUCTS ON MARS

  • Yoon Jong-suk;Shan Jie
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.683-686
    • /
    • 2005
  • This study addresses a photogrammetric approach to generate Mars topographic products from mapping data of Mars Global Surveyor (MGS). High-resolution stereo images and laser altimetry data collected from the MGS mission are combined and processed to produce Digital Elevation Models (DEM) and orthoimages. First, altimeter data is registered to high resolution images and considerable registration offset (around 325 m) is discovered on high resolution stereo images. Altimetry data, exterior orientation elements of the camera and conjugate points are used for bundle adjustment to solve this mis-registration and detennine the ground coordinates. The mis-registration of altimetry data are effectively eliminated after the bundle adjustment. Using the adjusted exterior orientation the ground coordinates of conjugate points are detennined. A sufficient number of corresponding points collected through image matching and their precise 3-D ground coordinates are used to generate DEM and orthoimages. A posteriori standard deviations of ground points after bundle adjustment indicate the accuracy of OEM generated in this study. This paper addresses the photogrammetric procedure: the registration of altimetry data to stereo pair images, the bundle adjustment and the evaluation, and the generation of OEM and orthoimages.

  • PDF

고해상도 스테레오 위성영상의 3차원 정확도 평가 및 향상 (Improvements on the Three-Dimensional Positioning of High Resolution Stereo Satellite Imagery)

  • 정인준;이창경;윤공현
    • 대한원격탐사학회지
    • /
    • 제30권5호
    • /
    • pp.617-625
    • /
    • 2014
  • 가장 대표적인 범용센서모델인 다항식비례모형(Rational Function Model)은 물리적 센서모형의 정확도에 견줄 수 있는 특성으로 인하여 상업용 위성영상의 센서모델링 기법에서 가장 많이 쓰이고 있다. RPCs를 이용하여 인공위성 영상의 3차원 위치를 결정할 수 있지만, 대축척의 지형도 제작시 정확도 측면에서 한계를 가지고 있다. 본 연구에서는 QuickBird-2, 인공위성 영상을 이용하여 지상기준점의 수량, 분포 및 다항식비례모형의 차수에 따른 정확도 분석을 수행하였다. 그 결과 1:25,000 축척의 지형도 제작시 수평위치 및 표고 허용오차 범위에 포함 될 수 있는 가능성을 확인하였다.

무인기 소프트웨어에서 처리된 표정요소를 이용한 도화품질 예측기술 개발 및 비교분석 (Development and Comparative Analysis of Mapping Quality Prediction Technology Using Orientation Parameters Processed in UAV Software)

  • 임평채;손종환;김태정
    • 대한원격탐사학회지
    • /
    • 제35권6_1호
    • /
    • pp.895-905
    • /
    • 2019
  • 현재 현업에서 사용되고 있는 상용 무인기 영상처리 소프트웨어는 카메라 캘리브레이션 정보나 영상 전체에 대한 블록 번들조정 정확도만 제공할 뿐 스테레오 페어의 실제 도화 가능여부에 대한 정확도는 거의 제공하지 않는다. 본 논문에서는 무인기 영상처리 소프트웨어에서 산출된 표정요소를 사용하여 도화품질을 산출하고 실제 도화기에 적용하여 도화품질의 신뢰성에 대해서 분석하였다. 도화품질은 Y시차 정확도, 상대모델 정확도, 절대모델 정확도의 3가지 정확도로 정의하였다. Y시차 정확도는 스테레오 페어간 입체시 여부를 판단할 수 있는 정확도이다. 상대모델 정확도는 모델 좌표계 상에서 스테레오 페어간 상대적인 번들조정 정확도이다. 절대모델 정확도는 절대 좌표계에서 번들조정 정확도이다. 실험데이터는 도심지를 대상으로 회전익에서 취득된 GSD 5 cm급의 영상 723장을 사용하여 도화품질을 분석하였다. 연구진이 개발한 기술을 사용해 예측한 상대모델 정확도와 실제 도화기에서 관측한 정확도의 최대오차는 0.11 m로 정밀한 결과를 보여 주었다. 절대모델 정확도도 마찬가지로, 도화기에서 관측한 정확도의 최대오차는 0.16 m로 정밀한 결과를 보여주었다.