• Title/Summary/Keyword: photoelectron

Search Result 1,584, Processing Time 0.034 seconds

Investigation of Liquid Crystal Alignment on ion beam exposed polystyrene surface (이온빔을 조사한 폴리스타일렌 기판에서의 액정의 배향특성)

  • Hwang, Hyun Suk;Lee, Jong-Deok;Rho, Jungkyu;Han, Jeong-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.33-37
    • /
    • 2014
  • This paper introduces homogeneous liquid crystal (LC) orientations on chemically modulated polystyrene (PS) surfaces using various ion beam (IB) exposure time. Transparent PS was replaced with conventional polyimide material. As a non-contact process, IB bombardment process induced LC orientation in the direction parallel to the IB process. Through x-ray photoelectron spectroscopy, it was shown that the chemical compositional changes of the IB-irradiated PS surfaces were determined as a function of IB exposure time.Using this analysis, the optimal IB bombardment condition was determined at IB exposure time of up to 15 s. Moreover, thermal stability on IB-irradiated PS surfaces were carried out which showed that a relatively high IB exposure time induced a thermally stable LC alignment property.

A Study on properties of a-Si:H layers by photoelectron spectroscopic (a-Si:H 분광스펙트럼 특성연구)

  • Yang, Hyeon-Hun;Kim, Han-Wool;Kim, Joo Hoe;Kim, Chul Joong;Lee, Chang Gwon;So, Soon-Youl;Park, Gye-Choon;Lee, Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.61.1-61.1
    • /
    • 2011
  • We report on a detailed study on gap-state distribution in thin amorphous silicon layers(a-Si:H) with film thickness between 5 nm and 20 nm c-Si wafers performed by UV excited photoelectron spectroscopy(UV-PES). We measured how the work function, the gap state density, the position of the Fermi-level and the Urbch-energy depend on the layer thickness and the doping level of the ultra thin a-Si:H(n) layer. It was found, that for phosphorous doping the position of the Fermi level saturates at $E_F-E_V$=1.47 eV. This is achieved at a gas phase concentration of 10000 ppm $PH_3$ in the $SiH_4/H_2$ mixture which was used for the PECVD deposition process. The variation of the doping level from 0 to 20000 ppm $PH_3$ addition results in an increase of the Urbach energy from 65 meV to 101 meV and in an increase of the gap state density at midgap($E_i-E_V$=0.86eV) from $3{\times}10^{18}$ to $2{\times}1019cm^{-3}eV^{-1}$.

  • PDF

Investigation on 2D Transition Metal Chalcogenide Using Angular-Resolved Photoelectron Spectroscopy (각도분해 광전자 분광법을 이용한 2차원 전이금속 칼코겐 화합물의 전자구조 연구)

  • Park, Soohyung
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.350-356
    • /
    • 2019
  • Recently, transition metal dichalcogenide (TMDC) monolayers have been the subject of research exploring the physical phenomenon generated by low dimensionality and high symmetry. One of the keys to understanding new physical observations is the electronic band structure of 2D TMDCs. Angle-resolved photoelectron spectroscopy (ARPES) is, to this point, the best technique for obtaining information on the electronic structure of 2D TMDCs. However, through ARPES research, obtaining the long-range well-ordered single crystal samples always proves a challenging and obstacle presenting issue, which has been limiting towards measuring the electronic band structures of samples. This is particularly true in general 2D TMDCs cases. Here, we introduce the approach, with a mathematical framework, to overcome such ARPES limitations by employing the high level of symmetry of 2D TMDCs. Their high symmetry enables measurement of the clear and sharp electronic band dispersion, which is dominated by the band dispersion of single-crystal TMDCs along the two high symmetry directions Γ-K and Γ-M. In addition, we present two important studies and observations for the direct measuring of the exciton binding energy and charge transfer of 2D TMDCs, both being established by the above novel approach.

X-ray Photoelectron Spectroscopy Study of LaFeO3 Powders Synthesized by Solution Combustion (용액연소법으로 제조한 LaFeO3의 XPS 특성)

  • Hwang, Yeon;Kang, Dae-Sik;Park, Mi-Hye;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.313-317
    • /
    • 2008
  • [ $LaFeO_3$ ] powders were synthesized using a method involving solution combustion, and the surface properties of these powders were examined by x-ray photoelectron spectroscopy. As the amount of fuel increased during the synthesis, the $LaFeO_3$ powders became amorphous with a large plate-like shape. It was found that the O 1s spectra were composed of two types of photoelectrons by deconvolutioning the spectra. Photoelectrons with higher binding energy come from adsorbed oxygen ($O^-$) whereas those with lower energy come from lattice oxygen ($O^{2-}$). The ratio of adsorbed and lattice oxygen increased as the ratio of the fuel and nitrate (${\Phi}$) increased. The binding energy of both types of oxygen increased as ${\Phi}$ increased due to the formation of carbonates.

Synchrotron radiation photoelectron spectroscopy study of oxygen doping effect by oxygen plasma treatment to inverted top emitting organic light emitting diodes

  • Hong, Ki-Hyon;Kim, Ki-Soo;Kim, Sung-Jun;Choi, Ho-Won;Tak, Yoon-Heung;Lee, Jong-Lam
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.118-120
    • /
    • 2009
  • We reported that the evidence of oxygen doping to copper-phthalocyanine (CuPc) by $O_2$-plasma treatment to Au electrode of inverted top emitting organic light emitting diodes (ITOLEDs). The operation voltage of OLEDs at 150 mA/$cm^2$ decreased from 16.1 to 10.3 V as oxygen atoms indiffued to CuPc layer using $O_2$-plasma. Synchrotron radiation photoelectron spectroscopy results showed that a new bond of Cu-O appeared and the energy difference between the highest occupied molecular orbital and $E_F$ is lowered by 0.20 eV after plasma treatment. Thus the hole injection barrier was lowered, reducing the turn-on voltage and increasing the quantum efficiency of OLEDs.

  • PDF