• Title/Summary/Keyword: photodegradation

Search Result 225, Processing Time 0.024 seconds

Surface Characteristics, Antimicrobial and Photodegradation Effect of Cotton Fibers Coated with TiO2 Nanoparticles and 3-Mercaptopropyltrimethoxysilane(3-MPTMS) (TiO2 나노입자와 3-MPTMS로 코팅 처리한 면섬유의 표면 특성과 항균성 및 광분해효과)

  • Park, Sujin;Lee, Jaewoong;Kim, Sam Soo;Lee, Sang Oh
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.245-255
    • /
    • 2018
  • In this study, cotton fabrics were coated with $TiO_2$ nanoparticles using 3-mercaptopropyltrimethoxysilane(3-MPTMS), which is highly reactive to cotton fabrics, as a medium, and the characteristics, antimicrobial properties, and photodegradation properties of the fibers were measured. The manufacturing process is as follows. (1) 3-MPTMS was added to isopropanol, and $TiO_2$ colloid was added to the mixture to prepare a solution. (2) Cellulose fibers were immersed in the prepared $3-MPTMS/TiO_2$ solution, stirred for 90 minutes at $45^{\circ}C$ in a constant temperature water bath, and dried thereafter. In order to identify the morphology of the cellulose fibers coated with $TiO_2$ nanoparticles, the surface was observed with a scanning electron microscope(SEM), and SEM-EDS was measured to identify the adhesion of $TiO_2$ nanoparticles. The SEM images showed $TiO_2$ nanoparticle and 3-MPTMS coated layers on the fibers and it was identified that $TiO_2$ nanoparticles were attached to the cellulose fibers. The antimicrobial activity of $3-MPTMS/TiO_2$-treated cotton fabrics was measured using a bacterial reduction method. $3-MPTMS/TiO_2$ cellulose fibers which was irradiated by ultra violet light, showed antimicrobial activity against Escherichia coli(ATCC 43895) and Staphylococcus aureus(ATCCBAA-1707) unlike unirradiated fibers. The cellulose fibers were stained with methylene blue and the photodegradation performance of the stained fabrics was analyzed. The stained fabrics showed high degradation performance with photolytic reactions of $TiO_2$ nanoparticles.

Estimated Photodegradation Properties of Acetanilide Using AOPWIN (AOPWIN을 이용한 Acetanilide의 광부해 특성 평가)

  • 권민정;최윤호;송상환;박혜연;구현주;전성환;나진균;박광식
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.3
    • /
    • pp.139-142
    • /
    • 2001
  • Acetanilide is a High Production Volume Chemical, which is produced about 2,300 tons/year in Korea as of 1998 survey. Most is used as an intermediate for synthesis of pharmaceuticals and dyes, and the chemical is one of seven chemicals of which human and environmental risk are being assessed by National Institute of Environmental Research under the frame of OECD SIDS program. The Atmospheric Oxidation Program for Microsoft Windows (AOPWIN) is used to estimates the rate constant for the atmospheric, gas-phase reaction between photochemically produced hydroxyl radicals and organic chemicals. It is also used to estimates the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic compounds. The rate constants estimated by the program are then used to calculate atmospheric half-lives for organic compounds based upon average atmospheric concentrations of hydroxyl radicals and ozone. AOPWIN requires only a chemical structure to make these predictions. Structures are entered into AOPWIN by SMILES (Simplified Molecular Input Line Entry System) notations. In this study, one of environmental fate/distribution of the chemical elements, photodegradation of acetanilide was estimated using AOPWIN model based on SMILES notation and chemical name data.

  • PDF

Characteristics of PCDD/Fs Deposited on Pine Needles (소나무잎에 침착된 PCDD/Fs 특성)

  • Chun, Man-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.599-605
    • /
    • 2005
  • The characteristics of PCDD/Fs were studied when accumulating on 1 to 4 year old pine needles that were used as passive samplers of atmospheric POPs. The rate of concentration increase was linear in lower(tetra- through hexa-) chlorinated PCDD/Fs, but higher (hepta- and octa-) chlorinated homologue concentrations did not increase with needle age. The lower were in gas phase and the higher in particles. Photodegradation rates of PCDDs on pine needles were similar to PCDFs, higher chlorinated PCDD/Fs tend to photolyze quickly. Therefore it is recommended that the younger needles should be collected to avoid errors from the depositional accumulation rates and photodegradation, and that, when comparing local concentrations of PCDD/Fs, needles of same age should be collected to reduce the errors.

Photodegradation of Gaseous Toluene Using Short-Wavelength UV/TiO2 and Treatment of Decomposition Products by Wet Scrubber (단파장자외선/TiO2 공정에 의한 가스상 톨루엔의 분해 및 습식세정장치에 의한 분해생성물의 제거)

  • Jeong, Ju-Young;Jurng, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.433-440
    • /
    • 2007
  • The photodegradation and by-products of the gaseous toluene with $TiO_2$ (P25) and short-wavelength UV ($UV_{254+185nm}$) radiation were studied. The toluene was decomposed and mineralized efficiently owed to the synergistic effect of photochemical oxidation in the gas phase and photocatalytic oxidation on the $TiO_2$ surface. The toluene by the $UV_{254+185nm}$ photoirradiated $TiO_2$ were mainly mineralized $CO_2$ and CO, but some water-soluble organic intermediates were also formed under severe reaction conditions. The ozone and secondary organic aerosol were produced as undesirable by-products. It was found that wet scrubber was useful as post-treatment to remove water-soluble organic intermediates. Excess ozone could be easily removed by means of a $MnO_2$ ozone-decomposition catalyst. It was also observed that the $MnO_2$ catalyst could decompose organic compounds by using oxygen reactive species formed in process of ozone decomposition.

A Study on Water Advanced Water Treatment by Photochemical Reaction (광화학 반응을 이용한 고도 수처리에 관한 연구)

  • Kim Min-Sik;Sung Dae-Dong
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.699-704
    • /
    • 1999
  • The Photodegradation efficient of total organic compounds in the drinking water has been studied using the methods of photocatalytic reaction and laser beam irradation. The results are summarized as follows; 1. The photodegradation efficiency of total organic compounds shows as $50\%\;to\;80\%$ as within one hour and after this the efficiency is decreased slowly. 2. The photodegradation efficiency of total organic compounds shows as 65 to $90\%$ within 3.3min. when Nd : YAG beam is irradiated to the water layer. 3. An excellent observation of the organic compound removal efficiency gives revealed in that case of the longest wavelength of 532nm is irradiated among the three kinds of laser beam sources of 532nm, 355nm and 266nm. 4. The organic compound removal efficiency shows high in the case of UV beam irradiation in the thin layer of water. However the efficiency is not depended on the thickness of water layer severely. 5. The removal efficiency of the organic compounds in the direct irradiation shows higher than the indirect irradiation in the case of UV beam, but the efficiency is not depended on the direction of irradiation in the case of Nd : YAG beam irradiation.

  • PDF

Photosensitive Polyimides Having Aromatic Sulfonyloxyimide Groups in the Main Chain (주쇄에 광분해성 방향족 술포닐옥시이미드기를 함유한 감광성 폴리이미드)

  • 오세용;이지영;조성열;정찬문
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.407-417
    • /
    • 2000
  • Photosensitive polyimides having cyclobutane or phenyl and aromatic sulfonyloxyimide units in the main chain have been synthesized and the photodegradation behavior was investigated in relation with the polymer structure. The polyimides were prepared by condensation polymerization of N-hydroxyl and sulfonyl chloride. The prepared polyimides were stable up to 25$0^{\circ}C$ without thermal degradation. It has been found that the photodegradation of polyimides upon irradiation of 254 nm UV light results from scission of N-O bonds or ring opening of imides moiety by spectroscopic measurements. The polyimides were useful as positive working photodegradable polymers. Especially, the positive tone image of polyimide containing a pyromellitic diimide moiety exhibited high sensitivity and resolution.

  • PDF

Direct Synthesis of Au/TiO2/graphene Composites and Their Application for Degradation of Various Organic Dyes (그래파이트로부터 직접 제조한 Au/TiO2/그래핀 복합체와 이를 이용한 염료의 광분해에 관한 연구)

  • Jeong, Gyoung Hwa;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.607-611
    • /
    • 2020
  • In this research, we synthesized Au/TiO2/graphene composites using ionic surfactants for the exfoliation of graphite layers, directly. In the graphene composite, TiO2 with thin nanosheet shapes was distributed on the graphene surface and Au nanoparticles with less than 10 nm sizes were evenly distributed on the surface of the TiO2 nanosheets. The Au/TiO2/graphene composite was then applied to the photodegradation of various dyes such as methylene blue, methylene orange and rhodamine 6G, and B. Among them, the methylene blue showed the most excellent photodegradation activity (91.6%) while the rhodamine B exhibited 31.0%.

Oxidation of Organic Compounds Using $TiO_2$ Photocatalytic Membrane Reactors ($TiO_2$ 광촉매 막반응기를 이용한 유기물의 산화)

  • 현상훈;심세진;정연규
    • Membrane Journal
    • /
    • v.4 no.3
    • /
    • pp.152-162
    • /
    • 1994
  • The photodegradation efficiency of formic acid on $TiO_2$ photocatalytic membranes was investigated. A new titania membrane reactors for purification of water combining microfiltration with photocatalytic degradation of organic compounds were developed. Titania membrane tubes(average pore size of $0.2\mu m$) were prepared by the slip casting, and porous thin films of $TiO_2$ were formed on the tube surface by the sol-gel process to increase the surface area, and consequently to increase photodegradation efficiency of organic compounds. The UV light with the wavelength of 365 nm was used as a light source for photocatalytic reactions. The photodegradation efficiency of the organic compounds was strongly dependent on the flux of the solution, the microstructure of the membrane (sol pH), and the amount of $O_2$ supplied. The effects of the primary oxidant such as $H_2O_2$ and dopants such as $Nb_2O_5$ on the photodegradation efficiency were also investigated. The results showed that more than 80% of formic acid could be degraded using membrane coated with a $TiO_2$ sol of pH 1.45. The photodegradation efficiency could be improved by about 20% when adding $H_2O_2$ in feed solution or doping $TiO_2$ membranes with $Fe_2O_3$.

  • PDF

Enhancement of Insecticidal Activity of the Acetamiprid Soluble Concentrate using a Photostabilizer (광안정제를 이용한 acetamiprid 액제의 살충효과 증진)

  • Kim, Hyeong-Min;Lee, Weon-Kee;Kim, Jong-Kwan;Seok, Chang-Su;Lee, Chang-Hyuk;Yu, Yong-Man;Hwang, In-Cheon
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.3
    • /
    • pp.210-217
    • /
    • 2006
  • The study was carried out to select the effective adjuvant as a photostabilizer for acetamiprid 5% SL(soluble concentrate) and to find its optimum content by using chemical and biological methods. Adjuvants used for the study were KS1 and KS2. Photodegradation test, insecticidal efficacies and residual analysis for the study were investigated. Although photodegradation rate of acetamiprid SL was decreased by addition of KS1 and KS2, the difference between KS1 and KS2 was not significant. As KS2 showed better efficacies against the cotton aphid (Aphis gossypii) and higher amount of residue on pepper than KS1, KS2 was selected as a photostabilizer for acetamiprid SL. Acetamipid SL with KS2 showed lower photodegradation rate, better efficacies against the cotton aphid (Aphis gossypii) and higher amount of residue on pepper as content of KS2 in acetamiprid SL was decreased. Therefore, it was concluded that the optimum content of KS2 was 0.1%. These results have demonstrated that the selected adjuvant could be used to enhance insecticidal activity and reduce spay dose of insecticide by protecting its photodegradation.