• Title/Summary/Keyword: photochemical smog

Search Result 44, Processing Time 0.023 seconds

Characteristics of VOCs Adsorption of Brick Prepared by MSWI Fly Ash (소각재로 제조한 건축외장재의 VOCs 흡착 특성 평가)

  • Ban, Hyo-Jin;Jeong, Jae-A;Lee, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.857-861
    • /
    • 2010
  • Recently photochemical smog has become a serious urban air pollution. And VOC is the major pollutant for it. With the advance of industrialization and urbanization, MSWI fly ash and sewage sludge and melting slag were generated. It is necessary to de-toxificate ashes, because they contain many toxic constituents and probably lead to contaminate the environment. The objective of this research was to prepare multi-functional brick which is able to remove VOCs in ambient air. The bricks were made of MSWI fly ash, sewage sludge and slag. The benzene adsorption experiment by brick was acted to evaluate its adsorptivity. And also photocatalyst material was coated to enhance its adsorptivity and the endurance on the brick. According to the result, the benzene showed 74~96%. The removal efficiency was increased and the breakpoint time was lengthened by coating a brick.

Characteristics of Source and Concentration of VOCs in Daegu (대구지역 대기 중 VOCs 농도 및 발생원 특성)

  • Gu Min-Jung;Choi Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.543-553
    • /
    • 2005
  • In recent days, photochemical smog due to the rapid industry development and vehicle increasement has become a critical pollutant in the metropolitan area and the number of ozone alarm signal has increased every year. This research was performed to evaluate VOCs emission source characteristics and concentration of VOCs in Daegu. The site average concentration was observed in the following order: industrial area > commercial area > residential area. Most of the VOCs species except toluene showed variations with higher concentration during nighttime, and lower concentration during the daytime. The major VOCs of stationary emission source were BTEX(benzene, toluene, ethylbenzene. xylene) and methylene chloride, trichloroethene and styrene. Also, those of automobile exhaust were toluene and benzene. Also, the major VOCs concentration emited by the vehicle fuel was observed in the following order: gasoline > light oil > liquefied petroleum gas (L.P.G). Correlation coefficients values were estimated between major VOCs such as toluene, ethylbenzene, m,p-xylene, o-xylene. Results showed that correlation coefficient values were significant magnitude above 0.76. Also, there showed highly significant correlations among ethyl benzene, m,p-xylene, and o-xylene concentration(Pearson correlation coefficients, r=0.868-0.982). Calculated correlation coefficients among commercial area,industrial area and residential area were 0.934-0.981, they showed high correlation. There showed highly correlation between stationary emission source and industrial area, compared with commercial area and residential area. Also, calculated correlation coefficients among commercial area, industrial area, residential area and automobile exhaust were 0.732, 0.725, 0.777, respectively.

Simple Forecasting of Surface Ozone through a Statistical Approach

  • Ma, Chang-Jin;Kang, Gong-Unn
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.6
    • /
    • pp.539-547
    • /
    • 2018
  • Objectives: Ozone ($O_3$) advisories are issued by provincial/prefectural and city governments in Korea and Japan when oxidant concentrations exceed the criteria of the related country. Advisories issued only after exposure to high $O_3$ concentrations cannot be considered ideal measures. Forecasts of $O_3$ would be more beneficial to citizens' health and daily life than real-time advisories. The present study was undertaken to present a simplified forecasting model that can predict surface $O_3$ concentrations for the afternoon of the day of the forecast. Methods: For the construction of a simple and practical model, a multivariate regression model was applied. The monitored data on gases and climate variables from Japan's air quality networks that were recorded over nearly one year starting from April 2016 were applied as the subject for our model. Results: A well-known inverse correlation between $NO_2$ and $O_3$ was confirmed by the monitored data for Iksan, Korea and Fukuoka, Japan. Typical time fluctuations for $O_3$ and $NO_x$ were also found. Our model suggests that insolation is the most influential factor in determining the concentration of $O_3$. $CH_4$ also plays a major role in our model. It was possible to visually check for the fit of a theoretical distribution to the observed data by examining the probability-probability (P-P) scatter plot. The goodness of fit of the model in this study was also successfully validated through a comparison (r=0.8, p<0.05) of the measured and predicted $O_3$ concentrations. Conclusions: The advantage of our model is that it is capable of immediate forecasting of surface $O_3$ for the afternoon of the day from the routinely measured values of the precursor and meteorological parameters. Although a comparison to other approaches for $O_3$ forecasting was not carried out, the model suggested in this study would be very helpful for the citizens of Korea and Japan, especially during the $O_3$ season from May to June.

Computational Study on the Application of Porous Media to Fluid Flow in Exhaust Gas Scrubbers (배기가스 세정장치내 유체 유동에 대한 다공성 매질 적용 기반의 전산해석적 연구)

  • Hong, Jin-pyo;Yoon, Sang-hwan;Yoon, Hyeon-kyu;Kim, Lae-sung;An, Jun-tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • Exhaust gases emitted from internal combustion engines contain nitrogen oxides (NOx) and sulfur oxides (SOx), which are major air pollutants causing acid rain, respiratory diseases, and photochemical smog. As a countermeasure, scrubber systems are being studied extensively. In this study, the pressure drop characteristics were analyzed by changing the exhaust gas inflow velocity using a scrubber for a 700 kW engine as a model. In addition, the fluid flow inside the scrubber and the behavioral characteristics of the droplets were studied using CFD, and the design compatibility of the cleaning device was verified. Flow analysis was performed using inertial and viscous resistances by applying porous media to the complex shape of the scrubber. The speed of the exhaust passing through the outlet nozzle from the inlet was determined through the droplet behavior analysis by spraying, and the flow characteristics for the pressure drop were studied. In addition, it was confirmed through computational analysis whether there was a stagnation section in the exhaust gas flow in the scrubber or the sprayed droplets were in good contact with the exhaust gas.