• Title/Summary/Keyword: photochemical quenching

Search Result 44, Processing Time 0.024 seconds

Copper and Zinc Uptake Capacity of a Sorghum-Sudangrass Hybrid Selected for in situ Phytoremediation of Soils Polluted by Heavy Metals (식물정화를 위한 중금속 내성 작물의 선발과 수수-수단그라스 교잡종의 구리와 아연 흡수능력)

  • Oh, Soon-Ja;Koh, Seok-Chan
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1501-1511
    • /
    • 2015
  • As essential trace elements, copper and zinc play important roles in many physiological events in plants. In excess, however, these elements can limit plant growth. This study selected a heavy metal-tolerant plant by analyzing seed germination and biomass of alfalfa (Medicago sativa), canola (Brassica campestris subsp. napus var. nippo-oleifera), Chinese corn (Setaria italica), and a sorghum-sudangrass hybrid (Sorghum bicolor ${\times}$ S. sudanense), and determined heavy metal uptake capacity by analyzing biomass, chlorophyll a fluorescence, and heavy metal contents under high external copper or zinc levels. The seed germination rate and biomass of the sorghum-sudangrass hybrid were higher under copper or zinc stress compared to the other three plants. The plant biomass and photosynthetic pigment contents of the sorghum-sudangrass hybrid seedlings were less vulnerable under low levels of heavy metals (${\leq}50ppm$ copper or ${\leq}400ppm$ zinc). The maximum quantum yield of PSII ($F_v/F_m$) and the maximum primary yield of PSII ($F_v/F_o$) decreased with increasing copper or zinc levels. Under high copper levels, the decline in $F_v/F_m$ was caused only by the decline in $F_m$, and was accompanied by an increase in non-photochemical quenching (NPQ). The $F_v/F_m$ declined under high levels of zinc due to both a decrease in the maximum fluorescence ($F_m$) and an increase in the initial fluorescence ($F_o$), and this was accompanied by a marked decrease in photochemical quenching (qP), but not by an increase in NPQ. Accumulations of copper and zinc were found in both aboveand below-ground parts of plants, but were greater in the below-ground parts. The uptake capacity of the sorghum-sudangrass hybrid for copper and zinc reached 4459.1 mg/kg under 400 ppm copper and 9028.5 mg/kg under 1600 ppm zinc. Our results indicate that the sorghum-sudangrass hybrid contributes to the in situ phytoremediation of copper or zinc polluted soils due to its high biomass yield.

Synergistic Effects of Low Dose Gamma Irradiation and Growth Regulators on Seed Germination, Growth and Photosynthesis in Rice (Oryza sativa L.) (벼의 종자 발아와 생육 및 광합성에 대한 저선량 감마선과 생장조절물질의 상승작용 효과)

  • Baek Myung-Hwa;Chung Byung Yeoup;Kim Jin-Hong;Wi Seung Gon;Kim Jae-Sung;Lee In-Jung
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.1
    • /
    • pp.64-70
    • /
    • 2005
  • To investigate the synergistic effects of low dose gamma irradiation and growth regulators on the growth and photosynthesis in rice (Oryza sativa L.), laboratory and greenhouse experiments were conducted using 4-year-old rice seeds. In the laboratory experiment, the germination rate was increased in 0.001 ppm IBA treatment, showing the synergistic effect of gamma irradiation and growth regulators. The seedling growth was increased by treatment of GA₃ and IBA, the irradiated groups having higher than the non-irradiated ones. Particularly, it was remarkable in 0.001 ppm IBA. In greenhouse experiment, seedling growth was increased in response to a combination of gamma irradiation and 0.001 ppm IBA. Effective quantum yield of PSⅡ(Ф/sub PSⅡ/) and photochemical quenching (qP) were increased, while non-photochemical quenching (qN) was decreased by 0.001 ppm IBA. A synergistic effect of gamma irradiation and IBA was only found in seedling growth. The present results suggest that low dose gamma irradiation and growth regulator could synergistically stimulate seedling growth.

Effects of Overall Shading and Partial Shading on the Response of Chlorophyll Fluorescence of Soybean (전면적차광과 부분차광이 콩 엽록소 형광 반응에 미치는 영향)

  • Cho, Yuna;Jo, Euni;Jeong, Jae-Hyeok;Yoon, Changyong;An, Kyunam;Cho, Jaeil
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.163-168
    • /
    • 2021
  • The growth experiment under shading condition has been performed to understand the eco-physiological responses of crops to light in terms of photosynthesis. There are two types of shading: overall shading and partial shading. In this study, the chlorophyll fluorescence of soybean was observed under the overall shading of the box made by polyresin and the partial shading at agrivoltaic system. The overall shading condition during vegetative growth induced lower SPAD and Electron transport rate (ETR). These lower values recovered after removal of shading box. However, the Non-photochemical fluorescence quenching (NPQ) became lower under overall shading and higher under partial shading. Such increase in NPQ limited crop photosynthesis even though the ETR was almost same to the control without shading treatment. Under the condition of partial shading, the values of SP AD and ETR for soybean did not change. However, the NPQ was higher than control condition. This suggests that the crop photosynthesis under both types of shading would be decreased by different eco-physiological processes which are the lower ETR in overall shading and the higher NP Q in partial shading despite the reduced light under shading conditions.

Novel Naphthalene Based Lariat-Type Crown Ethers Using Direct Single Electron Transfer Photochemical Strategy

  • Park, Hea Jung;Sung, Nam Kyung;Kim, Su Rhan;Ahn, So Hyun;Yoon, Ung Chan;Cho, Dae Won;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3681-3689
    • /
    • 2013
  • This study explored a direct SET-photochemical strategy to construct a new family of thioene conjugated-naphthalamide fluorophore based lariat-crown ethers which show strong binding properties towards heavy metal ions. Irradiations of designed nitrogen branched (trimethylsilyl)methylthio-terminated polyethylenoxy-tethered naphthalimides in acidic methanol solutions have led to highly efficient photocyclization reactions to generate naphthalamide based lariat type thiadiazacrown ethers directly in chemo- and regio-selective manners which undergo very facile secondary dehydration reactions during separation processes to produce their corresponding amidoenethio ether cyclic products tethered with electron donating diethyleneoxy- and diethyenethio-side arm chains. Fluorescence and metal cation binding properties of the lariat type enamidothio products were examined. The photocyclized amidoenethio products, thioene conjugated naphthalamide fluorophore containing lariat-thiadiazacrowns exhibited strong fluorescence emissions in region of 330-450 nm along with intramolecular exciplex emissions in region of 450-560 nm with their maxima at 508 nm. Divalent cation $Hg^{2+}$ and $Pb^{2+}$ showed strong binding to sulfur atom(s) in side arm chain and atoms in enethiadiazacrown ether rings which led to significant enhancement of fluorescence from its chromophore singlet excited state and concomitant quenching of exciplex emission. The dual fluorescence emission responses towards divalent cations might provide a new guide for design and development of fluorescence sensors for detecting those metals.

Different Susceptibilities to Low Temperature Photoinhibition in the Photosynthetic Apparatus Among three Cultivars of Cucumber (Cucumis sativus L.)

  • Oh, Kwang-Hoon;Lee, Woo-Sung;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • v.8 no.3_4
    • /
    • pp.105-112
    • /
    • 2001
  • Susceptibility to low temperature photoinhibition in photosynthetic apparatus was compared among three cucumber cultivars, Gahachungjang (GH), Banbaekjijeo (BB) and Gaeryangsymji (GR). By chilling in the light for 6 h, a sustained decrease in the potential quantum yield (Fv/Fm) and the oxidizable P700 contents was observed, and the decrease was less in GH than in BB and GR. Although the difference was small, some $\Phi_{PSII}$ remained in GH after light-chilling for 6 h indicating that a few electrons can flow around photosystem II(PSII). As a consequence, the primary electron acceptor of PSII, $Q_{A}$, was reduced slowly and was not fully reduced after light-chilling for 6 h in GH. Although the amplitude was small, the development of NPQ was also faster in GH, indicating a higher capacity for non-photochemical energy dissipation. The relative fraction of a fast relaxing component of NPQ (qf) was higher in GH. After light-chilling for 5 h, the values of qf in BB and GR became much smaller than that in GH, indicating BB and GR suffered more significant uncoupling of ATPase and/or irreversible damages in PSII. When fluorescence induction transients were recorded after chilling, significant differences in quenching coefficients (qQ and qN) were observed among the three cultivars.

  • PDF

Effects of Shading on the Growth and Chlorophyll Fluorescence under Agrivoltaic System Conditions

  • Hoejeong Jeong;Myeong-Gue Choi;Woon-Ha Hwang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.120-120
    • /
    • 2022
  • Agrivoltaic System (AVS) was introduced with the concept that it could generate electricity by using the extra light remain after crops use for photosynthesis in farm, which can earn additional income. However, crop yield was declined under the AVS condition due to the decrease in light energy. In the past, many researchers have been studied about crop states under shading conditions. However, the phenomenon of partial shading such as under the AVS is not well studied. In this study, to figure out the response of crop under the different light conditions, the electron transport rate (ETR) and non-photochemical quenching (NPQ) of rice was investigated using the chlorophyll fluorescence measurement. Also, physiological changes of crops under the shading conditions were investigated. The growth experiment under partial shading under AVS and overall shading which made of 35% shade cloth was conducted to understand the eco-physiological responses of rice to light in terms of the photosynthesis. Under the shading conditions, SPAD value and chlorophyll contents were higher, but the leaf thickness was lower than control. The overall shading condition show lower ETR than others during the growing season. In contrast, NPQ was higher than other treatments. This means the available light energy cannot contribute to photosynthesis under the shading condition.

  • PDF

Effect of Light-emitting Diodes on Photosynthesis and Growth of in vitro Propagation in Tea Tree (Camellia sinensis L.) (LED 광질이 차나무 기내배양묘의 생육 및 광합성에 미치는 영향)

  • Im, Hyeon-Jeong;Na, Chae-Sun;Song, Chi-Hyeon;Won, Chang-O;Song, Ki-Seon;Hwang, Jung-Gyu;Kim, Do-Hyun;Kim, Sang-Geun;Kim, Hyun-Chul
    • Journal of agriculture & life science
    • /
    • v.53 no.6
    • /
    • pp.13-21
    • /
    • 2019
  • The influences of light generated by LEDs on shoot growth and photosynthesis of Tea plant(Camellia sinensis L.) were evaluated. The growth characteristics were investigated after 45 days of culture under four different light qualities: fluorescent lamp, red LED, blue LED, red+blue+white LED. Shoot growth was promoted by red light, especially root length and area were further promoted under the red+blue+white LED. Also, T/R ratio and Chlorophyll content were highest in red+blue+white. Fluor Cam was used to measure the fluorescence images of the plants, inhibition of photochemical efficiency(Fv/Fm) were not changed in all treatment. However, non-photochemical quenching(NPQ) were found rapidly increasing in blue LED, these results were that blue LED were inhibit photosynthetic efficiency and must be considered for efficiently in vitro cultivation of the tea plant. The above results suggest that light qualities could be an important factor to foster in vitro growth of the species. Also, In order to produce healthy plants, it is effective to using light qualities of red+blue+white LED on in vitro culture of the tea plant. These results could be used to mass propagating shoot and produce of healthy seedling.

Photodynamic Stress-Induced Nonenzymatic Antioxidant Responses in Transgenic Rice Overexpressing 5-Aminolevulinic Acid Synthase (5-Aminolevulinic Acid Synthase를 과발현하는 형질전환 벼에서 광역학적 스트레스가 유도하는 비효소적 항산화반응)

  • Jung, Sun-Yo
    • Korean Journal of Weed Science
    • /
    • v.31 no.4
    • /
    • pp.323-329
    • /
    • 2011
  • We investigated photodynamic stress-induced antioxidant responses in transgenic rice overexpressing Bradyrhizobium japonicum 5-aminolevulinic acid synthase (ALA-S) coding sequence lacking plastidal transit sequence. High light of $350{\mu}mol\;m^{-2}\;s^{-1}$ decreased the quantum yield in the transgenic lines, C4 and C5, compared to that of wild-type line. By contrast, non-photochemical quenching (NPQ) levels of C4 and C5 under high light were higher than those of the transgenic lines under low light of $150{\mu}mol\;m^{-2}\;s^{-1}$ as well as wild-type line under low and high light. Greater levels of NPQ in the transgenic lines exposed to high light were in a close correlation with increases in the xanthophyll pigment, zeaxanthin. Under high light, levels of neoxanthin, violaxanthin, lutein, and ${\beta}$-carotene in the transgenic lines were lower than those in wild-type line. Taken together, nonphotochemical energy dissipation and photoprotectant xanthophyll pigments play a critical role to deal with the severe photodynamic damage in the transgenic rice plants, although they could not overcome the photodynamic stress, leading to severe photobleaching symptoms.

Photophysical Parameters, Photodecomposition, Fluorescence Quenching and Convolutive Voltammetry of 7-Diethylaminocoumarin (DEAC) Laser Dye (7 Diethylaminocoumarin (DEAC) 레이져 염료의 광물리적 파라미터, 광분해, 형광 소광 및 Convolutive Voltammetry)

  • El-Daly, S.A.;El-Hallag, I.S.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.13-22
    • /
    • 2010
  • The photophysical properties of 7-diethylaminocoumarin (DEAC) laser dye have been measured in different solvents. The emission spectrum of DEAC has also been measured in cationic (CTAC) and anionic (SDS) micelles. The laser parameters have been calculated in different solvents namely acetone, dioxane, ethanol and dimethylforamide(DMF). The photoreactivity of DEAC has been studied in $CCl_4$ solvent using 366 nm light. The values of photochemical yield (${\Phi}_c$) and rate constant (k) are determined. The interaction of organic acceptors such as picric acid (PA), tetracyanoethylene (TCNE) and 7,7,8,8-tetracynoquinonedimethane (TCNQ) with DEAC are also studied using fluorescence measurements in acetonitrile ($CH_3CN$). The electrochemical investigation of (DEAC) has been carried out using cyclic voltammetry and convolutive voltammetry combined with digital simulation technique at a platinum electrode in 0.1 mol $L^{-1}$ tetrabutyl ammonium perchlorate (TBAP) in $CH_3CN$ solvent. The electrochemical parameters of the investigated compound were determined using cyclic and convolutive voltammetry. The extracted electrochemical parameters were verified and confirmed via digital simulation method.

Performance Comparison of Pressure Sensitive Paint and Pressure Field Measurement of Oblique Impinging Jet (Pressure Sensitive Paint의 성능비교 및 경사충돌분류의 압력장 측정)

  • Lee, Sang-Ik;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.1031-1038
    • /
    • 2002
  • The pressure sensitive paint (PSP) has recently received a considerable attention in the fields of aerodynamics and fluid mechanics as a new revolutionary optical technique to measure pressure fields on a body surface. In this study, the feasibility and effectiveness of the PSP pressure field measurement technique have been investigated experimentally. Seven different PSP formulations including two porphyrins(PtOEP and PtTFPP) and four polymers(Polystyrene, cellulous acetate butyrate, GP-197 and Silicon-708) were tested to check the performance and characteristics of each combination. The static calibration of each PSP formulation was carried out in a constant-pressure chamber. The PSP technique was applied to an oblique impinging jet flow to measure variation of pressure field on the impinging plate at on oblique jet angle of ${\theta}=60^{\circ}$. Pressure field images were captured by an 12bit intensified CCD(ICCD, $1K{\times}1K$)camera. As a result, the dynamic response of PSP depends on the oxygen permeability of polymer and the photochemical interaction between luminophore and polymer as well as the reaction of luminophore itself. The reaction of luminophore was changed by employing different polymers. In conclusion, Among 7 PSP formulation tested, the combination of PtTFPP and cellulous acetate butyrate show the best performance. In addition, the detail pressure field of an oblique high-speed impinging jet was measured effectively using the PSP technique.