• Title/Summary/Keyword: photocatalytic reaction

Search Result 277, Processing Time 0.023 seconds

The Manufacture of Absorbents and Removal Characteristics of VOCs by Essential Oil and Photocatalyst (식물정유와 광촉매를 이용한 흡수제 제조 및 VOCs 제거특성에 관한 연구)

  • Jeong, Hae-Eun;Yang, Kyeong-Soon;Kang, Min-Kyoung;Cho, Joon-Hyung;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.54-63
    • /
    • 2017
  • Volatile organic compounds (VOCs) are widely used in both industrial and domestic activities. VOCs are one of the most unpleasant, frequently complaint-rousing factors of pollution around the world. It is now necessary to research and develop an alternative technology that could overcome the problems of the existing odor-control and VOC-eliminating techniques. In this study, essential oil and photocatalytic process was applied in the removal of benzene and toluene, typical VOCs in petrochemistry plant. therefore, this study conducted experiments on the selection of appropriate essential oil, photodegradation, hydroxyl radical generation capacity. The removal efficiency and reaction rate were performed to selecte the type and concentration of essential oil. As a result, removal efficiency of Hinoki Cypress oil was approximately 70% and reaction rate of Hinoki Cypress was high. The results of photolysis experiment, photocatalytic oxidation process showed that the decomposition efficiency of VOCs increased considerably with increasing UV lamp power. In addition, the conversion of VOCs was increased up to $0.1gL^{-1}$ photocatalysts. The hydroxyl radicals measure was performed to determine the ability to generate hydroxyl radicals. The analytical result showed that high $TiO_2$ concentration and lamp power was produced many hydroxyl radical. Experiments of the removal efficiency and reaction rate were performed using essential oil and photooxidation. As a result, the removal efficiency showed that the removal efficiency was increased high temperature and reaction time. The activation energy was calculated from the reaction rate equation at various temperature condition. Activation energy was approximately $18kJmol^{-1}$.

The growth of zinc oxide particles by coagulation in aerosol reactor (에어로졸 반응기에서 산화아연 입자의 응집 성장)

  • Lee, Jong Ho;Song, Shin Ae;Park, Seung Bin
    • Particle and aerosol research
    • /
    • v.4 no.2
    • /
    • pp.69-75
    • /
    • 2008
  • Nanosize ZnO particles were prepared by oxidation of zinc vapor and the particle growth was modeled by a coagulation model by assuming that the characteristic time for reaction was much shorter than coagulation time and residence time (${\tau}_{reaction}{\ll}{\tau}_{coagulation}{\ll}{\tau}_{residence}$). Experimental measurement of zinc oxide particles diameter was consistent with the predicted result from the coagulation model. For practical purpose of predicting zinc oxide size in areosol reactor, the constant kernel solution is concluded to be sufficient, Uniqueness of nano-scale property of zinc oxide was confirmed by the higher photocatalytic activity of zinc oxide than nanosize titania particles.

  • PDF

Photocatalytic Reaction of Sensitizer, Rose Bengal and Supersensitizer, Allylthiourea (감응제 Rose Bengal과 초감응제 AIIylthiourea의 광촉매 반응)

  • Yoon, Kil-Joong;Lee, Beom-Gyu
    • Analytical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.13-19
    • /
    • 1998
  • In the dye sensitization for the solar energy conversion with a photoelectrochemical cell containing allylthiourea, the time profile of the sensitized photocurrent showed a rise and fall with the irradiation time. The dye solution before and after irradiation was analyzed by means of spectroscopic methods. A new precipitation reaction between sensitizer and supersensitizer and photobleaching of the dye appeared to be involved in the decreased photocurrent.

  • PDF

Evaluation of NOx Removal Efficiency of Photocatalytic Concrete for Road Structure (도로구조물 적용을 위한 광촉매 콘크리트의 질소산화물(NOx) 제거효율 평가)

  • Kim, Young Kyu;Hong, Seong Jae;Lee, Kyung Bae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.49-58
    • /
    • 2014
  • PURPOSES : In areas of high traffic volume, such as expressway across large cities, the amount of nitrogen oxides (NOx) emitted into the atmosphere as air pollution can be significant since NOx gases are the major cause of smog and acid rain. Recently, the importance of NOx removal has arisen in the world. Titanium dioxide ($TiO_2$), that is one of photocatalytic reaction material, is very efficient for removing NOx. The NOx removing mechanism of $TiO_2$ is the reaction of solar photocatalysis. Therefore, $TiO_2$ in road structure concrete need to be contacted with ultraviolet rays (UV) to be activated. In general, $TiO_2$ concretes are produced by replacement of $TiO_2$ as a part of concrete binder. However, considerable portion of $TiO_2$ in concrete cannot contact with the pollutant in the air and UV. Therefore, $TiO_2$ penetration method using the surface penetration agents is attempted as an alternative in order to locate $TiO_2$ to the surface of concrete structure. METHODS : This study aimed to evaluate the NOx removal efficiency of photocatalytic concrete due to various $TiO_2$ application method such as mix with $TiO_2$, surface spray($TiO_2$ penetration method) on hardened concrete and fresh concrete using surface penetration agents. The NOx removal efficiency of $TiO_2$ concrete was confirmed by NOx Analyzing System based on the specification of ISO 22197-1. RESULTS : The NOx removal efficiency of mix with $TiO_2$ increased from 11 to 25% with increasing of replacement ratio from 3 to 7%. In case of surface spray on hardened concrete, the NOx removal efficiency was about 50% due to application amount of $TiO_2$ with surface penetration agents as 300, 500 and 700g/m2. The NOx removal efficiency of surface spray on fresh concrete due to all experimental conditions, on the other hand, which was very low within 10%. CONCLUSIONS : It was known that the $TiO_2$ penetration method as surface spray on hardened concrete was a good alternative in order to remove the NOx gases for concrete road structures.

CdS-Titania-Nanotube Composite Films for Photocatalytic Hydrogen Production (CdS/Titania-나노튜브 복합 막을 이용한 광촉매적 수소제조)

  • Lee, Hyun-Mi;So, Won-Wook;Baeg, Jin-Ook;Kong, Ki-Jeong;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.230-237
    • /
    • 2007
  • Titania nanotube(TiNT) and CdS sol were synthesized by hydrothermal reaction under strongly basic condition and by precipitation reaction of $Cd(N0_3)_2$ and $Na_2S$ aqueous solutions, respectively. After preparing a series of CdS-TiNT composite films on $F:SnO_2$ conducting glass with variation of the mole ratio (r) of TiNT/(CdS+TiNT), their visible light absorption, photocatalytic activities for hydrogen production, and the photocurrent generation were examined. In general, this CdS-TiNT series showed lower photocatalytic activities and photocurrent generation under Xe light irradiation compared to their counterparts, i.e., CdS-$TiO_2$ particulate series. It appeared that TiNTs are not so effective photocatalyic material in spite of their larger specific surface areas compared to $TiO_2$ nanoparticles, because they indicate a poor crystallinity and less intimate interaction or contact with CdS particles owing to the tubular morphology and an easy agglomeration among themselves.

Fabrication of Photocatalytic $TiO_2$ Thin Film Using Aerosol Deposition Method (Aerosol Deposition 법을 이용한 광촉매 $TiO_2$ 박막 제조)

  • Choi Byung-Kyu;Min Seok-Hong;Kim Jong-Oh;Kang Kyong-Tae;Choi Won-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.55-59
    • /
    • 2004
  • We fabricates the $TiO_2$ thin film from anatase phase $TiO_2$ powder having good photocatalytic property using aerosol deposition method at room temperature. Aerosol deposition method, which sprays an aerosol powder with ultrasonic velocity and deposits a thin film on substrate at low temperature, has the advantages of low thermal stress and low cost. To fabricate the $TiO_2$ thin film, the aerosol bath pressure and chamber pressure were 500 torr and 0.4 torr, respectively. The difference of aerosol bath pressure and chamber pressure accelerated the $TiO_2$ nano powder to ultrasonic velocity through the nozzle of $0.4 mm{\times}10 mm$ and $TiO_2$ thin film was finally formed. SS mesh with diameter of 50 mm was used as a substrate to apply the $TiO_2$ thin film to water quality purification. The raw powder was dehydrated for the good dispersion of $TiO_2$ powder. To suppress the formation of second particle, the powder was dispersed for 90 min in alcohol bath by ultrasonic treatment and desiccated. The grain size of $1 {\mu}m$ was observed in $TiO_2$ thin film deposited on SUS mesh by scanning electron microscopy (SEM). The anatase phase of $TiO_2$ thin film was also observed by X-ray diffraction (XRD) and the anatase phase of raw powder was nicely maintained after aerosol deposition. The results are applicable to water treatment filter having photocatalytic reaction.

  • PDF

Treatment of highly concentrated organic wastewater by high efficiency $UV/TiO_{2}$ photocatalytic system (고효율 자외선/광촉매 시스템을 이용만 고농도 유기성 폐수처리)

  • Kim, Jung-Kon;Jung, Hyo-Ki;Son, Joo-Young;Kim, Si-Wouk
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.83-89
    • /
    • 2008
  • Food wastewater derived from the three-stage methane fermentation system developed in this lab contained high concentration organic substances. The organic wastewater should be treated through advanced wastewater treatment system to satisfy the "Permissible Pollutant Discharge Standard of Korea". In order to treat the organic wastewater efficiently, several optimum operation conditions of a modified $UV/TiO_{2}$ photocatalytic system have been investigated. In the first process, wastewater was pre-treated with $FeCl_{3}$. The optimum pH and coagulant concentration were 4.0 and 2000mg/L, respectively. Through this process, 52.6% of CODcr was removed. The second process was $UV-TiO_{2}$ photocatalytic reaction. The optimum operation conditions for the system were as follows: UV lamp wavelength, 254 nm; wastewater temperature, $40^{\circ}C$; pH 8.0; and air flow rate, 40L/min, respectively. Through the above two combined processes, 69.7% of T-N and 70.9% of CODcr contained in the wastewater were removed.

Decomposition of Gas-Phase Benzene on TiO2 Coated Alumina Balls by Photocatalytic Reaction (이산화티탄이 코팅된 알루미나 볼에서 광촉매 반응에 의한 기상벤젠의 분해)

  • Lee Nam-Hee;Jung Sang-Chul;Sun Il-Sik;Cho Duk-Ho;Shin Seung-han;Kim Sun-Jae
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.407-412
    • /
    • 2004
  • Photo decomposition of gas phase benzene by $TiO_2$ thin films chemically deposited on alumina balls were investigated under UV irradiation. Photo decomposition rates were measured in real time during the reaction using a photo ionization detector, which ionizes C-H bonding of benzene molecules and then converts into volatile organic compounds (VOCs) concentrations. From the measuring results, the VOCs concentration increased instantly when IN irradiated because C-H bonds of benzene molecules strongly absorbed on the surface of $TiO_2$ films before the IN irradiation was destroyed by photo decomposition. After that, the VOCs concentration decreased with increasing surface area of $TiO_2$ and reaction time under the IN irradiation. At the optimal conditions for the photo decomposition of gas phase benzene, the reaction rate of the photo decomposition for high concentrations (over 60 ppm) was slow but that of relatively low concentration (under 60 ppm) was fast, due to limited surface area of $TiO_2$ thin films for the reaction. Thus, it is concluded that the photo decomposition rate was mainly affected by the surface area of $TiO_2$ or absorption reaction.

Recovery of Copper, Reuse of $TiO_2$, and Assessment of Acute Toxicity in the Photocatalytic Oxidation of Cu(II)-EDTA (Cu(II)-EDTA 광촉매 산화반응에서의 구리회수, $TiO_2$ 재사용 및 처리수 독성평가)

  • Yang, Jae-Kyu;Choi, Bong-Jong;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.844-851
    • /
    • 2005
  • The purpose of this study was to determine feasibility of application of regenerated or recycled $TiO_2$ on the successive treatment of Cu(II)-EDTA. The recovery of copper, the reuse of $TiO_2$ and the assessment of acute toxicity was studied in the total eight successive photocatalytic reactions. Aqueous solution of $10^{-4}\;M$ Cu(II)-EDTA was treated using an illuminated $TiO_2$ at pH 6 in a circulating reactor. Two different procedures were applied in the reuse of $TiO_2$: i) recycle of $TiO_2$ without acid wash ii) regeneration of $TiO_2$ with acid wash to remove adsorbed copper in a previous experiment. The averaged decomplexation rate constant($k'_{obs}$) of Cu(II)-EDTA in recycle of $TiO_2$ without acid wash was approximately 45% less than that in regeneration of $TiO_2$ with acid wash. Removal of Cu(II) was near complete after 180 minutes in the total eight successive photocatalytic reactions using the regenerated $TiO_2$ after acid wash. In contrast, removal of Cu(II) was minimum at total fifth successive photocatalytic oxidation using the recycled $TiO_2$ without arid wash. The recovered $TiO_2$ was approximately 86% in average in each procedure. The recovered Cu(II) was 67.9% in average. The acute relative toxicity of the treated water rapidly declined at an initial reaction time up to 60 minutes but little declination was observed after 60 minutes due to little degradation of DOC. Relative toxicity of treated water using the recycled $TiO_2$ without acid wash we some what well correlated with the concentration of dissolved Cu(II). From this work, it is suggested that Cu(II)-EDTA can be effectively treated using an integrated cyclic photocatalytic oxidation with recovery of $TiO_2$ and Cu(II).

Characterization of Methylene Blue Decomposition on Fe-ACF/TiO2 Photocatalysts Under UV Irradiation with or Without H2O2

  • Zhang, Kan;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.481-487
    • /
    • 2009
  • The photocatalysts of Fe-ACF/$TiO_2$ compositeswere prepared by the sol-gel method and characterized by BET, XRD, SEM, and EDX. It showed that the BET surface area was related to adsorption capacity for each composite. The SEM results showed that ferric compound and titanium dioxide were distributed on the surfaces of ACF. The XRD results showed that Fe-ACF/$TiO_2$ composite only contained an anatase structure with a Fe mediated compound. EDX results showed the presence of C, O, and Ti with Fe peaks in Fe-ACF/$TiO_2$ composites. From the photocataytic degradation effect, $TiO_2$ on activated carbon fiber surface modified with Fe (Fe-ACF/$TiO_2$) could work in the photo-Fenton process. It was revealed that the photo-Fenton reaction gives considerable photocatalytic ability for the decomposition of methylene blue (MB) compared to non-treated ACF/$TiO_2$, and the photo-Fenton reaction was improved by the addition of $H_2O_2$. It was proved that the decomposition of MB under UV (365 nm) irradiation in the presence of $H_2O_2$ predominantly accelerated the oxidation of $Fe^{2+}$ to $Fe^{3+}$ and produced a high concentration of OH radicals.