• Title/Summary/Keyword: photoacoustic

Search Result 95, Processing Time 0.016 seconds

An Analysis of Photoacoustic Signals Excited by Excimer Pulsed Laser (엑시며 레이저 펄스에 의해 여기된 광음향신호 분석)

  • Yi, Chong-Ho;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.39-46
    • /
    • 1997
  • In this paper, the PA(PhotoAcoustic) signals excited in metals by Xef, KrF excimer laser pulse were detected by a PZT transducer, and its transforming machanism and directivity patterns were analysed. The laser energy density in irradiation spot divides the PA trasnsorming machanism to be classified into thermoelastic and plasma regime, and the transforming machanisms in two regimes are different from each other. Based on theoretical model, it is predicted that shear wave is greater than longitudinal in the thermoelastic regime and longitudinal is greater than shear wave by reaction force in plasma regime. These predictions were verified through experiments by using of the XeF excimer pulsed laser of 480nm center-wavelength and the KrF excimer pulsed laser of 248nm. Also, for its directivity pattern, an arrival angle of the maximum longitudinal energy was around $60^{\circ}$ and maximum shear energy was around $30^{\circ}$ in the thermoelastic regime, and an arrival angle of maximum longitudinal energy was shown on nomal to the surface and maximum shear energy was represented in about $30^{\circ}$ in plasma regime.

  • PDF

The Development of N2O Emission Factor at Killn Type Pyrolysis Melting Facility (외열킬른형 열분해용융시설의 N2O 배출계수 개발)

  • Yun, Hyun-Ki;Lee, Dae Kyeom;Cho, Changsang;Kang, Seongmin;Yoon, Young joong;Jeon, Youngjae;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.231-237
    • /
    • 2017
  • In this study, the $N_2O$ emission factor of the facility was developed by measuring the kiln type pyrolysis melting facility. This used PAS (Photoacoustic Spectroscopy) method and measured the $N_2O$ emission concentration. From March 2016 to April 2016, it was measured over a total of two times and $N_2O$ concentrations were measured continuously for 24 hours using a 24 hour continuous measuring instrument (LSE-4405). The measured $N_2O$ emission concentration of the pyrolysis melting facility was 0.263 ppm on average and the emission concentration distribution in the range of 0.013~0.733 ppm was obtained. Therefore, the $N_2O$ emission factor of the kiln-type pyrolysis melting facility was estimated to be $0.829gN_2O/ton$-Waste. As a result of comparing the $N_2O$ emission factor of the thermal kiln type pyrolysis melting facility and the previous study, previous studies were about 18 times higher. It is estimated that this is due to the difference of furnace temperature, oxygen concentration and denitrification facilities. It is considered that the study of the emission factor of pyrolysis melting facility is an important factor in improving the credibility of greenhouse gas inventory in waste incineration sector.

The Utility of Picosecond Nd:YAG Laser for Tattoo Removal

  • Park, Kyong Chan;Park, Eun Soo;Nam, Seung Min;Shin, Jin Su
    • Medical Lasers
    • /
    • v.10 no.1
    • /
    • pp.31-36
    • /
    • 2021
  • Background and Objectives Several predicted optimal parameters for laser treatment have been suggested, making the settings subject to variation. Thus, picosecond lasers may require more data and studies to optimize the laser parameters, increase the efficacy of each session, and minimize the total number of sessions. This study evaluated the results of picosecond laser tattoo removal in variable locations, focusing on the aesthetic outcome, number of procedures, and adverse effects. Materials and Methods Nine patients who underwent picosecond laser treatment from February 2014 to July 2020 were enrolled. Before the procedures, the required number of sessions was estimated using the Kirby-Desai scale. At the end of the treatment, the patients assessed their satisfaction. The patient and two plastic surgeons assessed the clearance of the tattoo. Results The mean of the clearance was 86.6% in both the patient and investigators assessment. The patients reported satisfaction for an average score of 5.1 ± 0.78 for the aesthetic outcome, 4.5 ± 0.78 for pain, 4.1 ± 0.92 for the number of procedures, and 4.7 ± 0.97 for adverse effects. The average number of actual procedures was 6.7 ± 1.20. The average Kirby-Desai score was 7.1 ± 1.45. Their correlation coefficient was 0.803, which is considered a strong positive correlation. Conclusion Picosecond lasers have a remarkable ability to degrade smaller tattoo pigments through a photoacoustic effect. Moreover, a picosecond laser treatment for tattoo removal can be a safe and effective method. Picosecond lasers are a promising technology with the potential to optimize the treatment of tattoos.

Evolution of Anatomical Studies on the Arterial, Venous, and Lymphatic System in Plastic Surgery

  • Soo Jin Woo;Hee Tae Koo;Seong Oh Park;Hiroo Suami;Hak Chang
    • Archives of Plastic Surgery
    • /
    • v.49 no.6
    • /
    • pp.773-781
    • /
    • 2022
  • Anatomies of the vascular and lymphatic systems have been vital research topics in reconstructive surgery. Harvey was a pioneer who provided the earliest descriptions of the cutaneous vasculature in the 17th century. The concept of vascular territories of the skin was first described by Manchot. The radiographic injection method in cadavers was developed by Salman, who defined more than 80 vascular territories. The arterial system has been thoroughly investigated with the development of regional and free flaps. The concept of axial and random pattern flaps was introduced by McGregor and Morgan. Manchot's vascular territories were refined by Taylor and Palmer as the angiosome concept. Detailed information about the venous circulation is essential for reconstructive surgeries. The concept of intrinsic and extrinsic venocutaneous vascular systems was introduced by Nakajima and led to the development of the venoadipofascial flap. The importance of venous augmentation in flap survival was emphasized by Chang. The lymphatic system was discovered much later than the arterial and venous systems. Aselli was credited for discovering the lacteal vessels in the 17th century; mercury was popularly used as a contrast agent to distinguish lymphatic vessels for the next three centuries. A radiographic method in cadavers was developed by Suami. Lymphatic imaging devices are constantly upgrading, and photoacoustic imaging was recently introduced for three-dimensional visualization of architecture of superficial layers of the lymphatic and venous systems.

A low noise, wideband signal receiver for photoacoustic microscopy (광음향 현미경 영상을 위한 저잡음 광대역 수신 시스템)

  • Han, Wonkook;Moon, Ju-Young;Park, Sunghun;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.507-517
    • /
    • 2022
  • The PhotoAcoustic Microscopy (PAM) has been proved to be a useful tool for biological and medical applications due to its high spatial and contrast resolution. PAM is based on transmission of laser pulses and reception of PA signals. Since the strength of PA signals is generally low, not only are high-performance optical and acoustic modules required, but high-performance electronics for imaging are also particularly needed for high-quality PAM imaging. Most PAM systems are implemented with a combination of several pieces of equipment commercially available to receive, amplify, enhance, and digitize PA signals. To this end, PAM systems are inevitably bulky and not optimal because general purpose equipment is used. This paper reports a PA signal receiving system recently developed to attain the capability of improved Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) of PAM images; the main module of this system is a low noise, wideband signal receiver that consists of two low-noise amplifiers, two variable gain amplifiers, analog filters, an Analog to Digital Converter (ADC), and control logic. From phantom imaging experiments, it was found that the developed system can improve SNR by 6.7 dB and CNR by 3 dB, compared to a combination of several pieces of commercially available equipment.