• Title/Summary/Keyword: phosporic acid

Search Result 3, Processing Time 0.018 seconds

Fabrication of the alumina membrane with nano-sized pore array using the thin film aluminum (박막 알루미늄을 이용한 나노미터 크기의 미세기공 형성)

  • Lee, Byoung-Wook;Lee, Jae-Hong;Lee, Eui-Sik;Kim, Chang-Kyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.120-122
    • /
    • 2005
  • An alumina membrane with nano-sized pore array by anodic oxidation using thin film aluminum deposited on silicon wafer was fabricated. It is important that the sample prepared by metal deposition method has a flat aluminum surface and a good adhesion between the silicon wafer and the thin film aluminum. The oxidation time was controlled by observation of current variation. While the oxalic acid with 0.2M was used for low voltage anodization under 100V, the chromic acid with 0.1M was used for high voltage anodization over 100V. The nano-sized pores with diameter of 60~120nm was obtained by low voltage anodization of 40~90V and those of 200~300nm was obtained by high voltage anodization of 120~160V. Finally, the sample was immersed to the phosphoric acid with 0.1M concentration to etching the barrier layer. The sample will be applied to electronic sensors, field emission display, and template for nano-structure.

  • PDF

The State of the Art of the Fuel Cells (연료전지 기술현황)

  • Lee, Jin-Hong;ShunWoo, Hyun-Bum
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.3-12
    • /
    • 1991
  • Fuel cells are electrochemical devices that convert the chemical reaction energy directly into the electrical energy. In a typical fuel cell, gaseous fuel is fed continuously to the anode(negative electrode) compartment and the oxidant(i.e, oxygen from air) is fed continuously to the cathode(positive electrode) compartment; the electrochemical reactions take place at the electrodes to produce an electric current. Many of the operational characteristics of fuel cell systems are superior to those of conventional power generation system because of good efficiency, environmental protection, safty, modularity etc. From those reasons, the fuel cells are considered to be the solution to the future problem of energy conversion. The objective of this paper is to introduce the technical status of fuel cell technologies and our national project for the development of the phosporic acid fuel cell.

  • PDF

The Effect of the Activation of Phosphoric Ester Cellulose Particles on the Electrotheological Properties of Anhydrous ER Fluids (인산 에스테르 반응 셀룰로오스 미립자의 활성화가 비수계 ER 유체의 전기유변학적 특성에 미치는 영향)

  • 안병길;최웅수;권오관;문탁진
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.7-16
    • /
    • 1998
  • The electrorheological (ER) behavior of suspensions in silicone oil of phosphoric ester cellulose powder (average particle size: 17.77 $\mu$m) was investigated at room temperature with electric fields up to 2.5 KV/mm. For development of anhydrous ER suspensions using at wide temperature range, we aimed to know the effect of activation of phosphoric ester cellulose particles on the ER activities. As a first step, the anhydrous ER suspensions mixing with the phosphoric ester cellulose particles which were treated with 2M phosporic acid and 4M urea were measured. After activating the anhydrous ER suspensions at 12$0^{\circ}C$, not only the analysis of dispersing cellulose particles which were reacted by phosphoric ester but also the electrorheological characteristics of ER suspensions such as dielectric constant, current density, electrical conductivity and rheological properties were studied. From the experimental results, the activation of phosphoric ester cellulose particles had an influence on the ER properties of anhydrous ER suspensions. As the activation time went by, the size and number of dispersing particles, the electrical properties and the initial apparent viscosity $(η_0)$ of ER suspensions were increased till the activation time passed 5 hours. Also, it was possible, the electrorheological effect $($\tau$/$\tau$_0)$ of ER fluids was grown by the activation of phosphoric ester cellulose particles.