• Title/Summary/Keyword: phosphor screen

Search Result 83, Processing Time 0.026 seconds

Flexible Information Display using Powder Electroluminescent Device (후막 전계 발광 소자를 이용한 정보 표시형 Flexible Display)

  • Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.428-430
    • /
    • 2000
  • In this paper, the Flexible information display was implemented using AC powder electroluminescent device. ZnS:Cu and $BaTiO_3$ was used as a phosphor and dielectric respectively. The preparation of phosphor and dielectric layer was performed with screen printing. The implemented system of the Flexible information display was divided as following; EL display, driving circuit, software for driving. The properties of fabricated devices was measured with EL spectrum and brightness.

  • PDF

Feasibility of Single-Shot Dual-Energy X-ray Imaging Technique for Printed-Circuit Board Inspection (인쇄회로기판 검사를 위한 단일조사 이중에너지 엑스선 영상기법의 유용성에 관한 연구)

  • Kim, Seung Ho;Kim, Dong Woon;Kim, Daecheon;Kim, Junwoo;Park, Ji Woong;Park, Eunpyeong;Kim, Jinwoo;Kim, Ho Kyung
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 2015
  • A single-shot dual-energy x-ray imaging technique has been developed using a sandwich detector by stacking two detectors, in which the front and rear detectors respectively produce relatively lower and higher x-ray energy images. Each detector layer is composed of a phosphor screen coupled with a photodiode array. The front detector layer employs a thinner phosphor screen, whereas the rear detector layer employs a thicker phosphor screen considering the quantum efficiency for x-ray photons with higher energies. We have applied the proposed method into the inspection of printed circuit boards, and obtained dual-energy images with background clutter suppressed. In addition, the single-shot dual-energy method provides sharper-edge images than the conventional radiography because of the unsharp masking effect resulting from the use of different thickness phosphors between the two detector layers. It is promising to use the single-shot dual-energy x-ray imaging for high-resolution nondestructive testing. For the reliable use of the developed method, however, more quantitative analysis is further required in comparisons with the conventional method for various types of printed circuit boards.

A Study on the Characteristics of Low Temperature Firing Phosphor Paste for Flat Light Source (면광원용 저온 소성형 형광체 Paste 특성 연구)

  • Lee, Dong-Wook;Nam, Su-Yong
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2007.11a
    • /
    • pp.75-81
    • /
    • 2007
  • As manufacturing the low temperature firing paste applicable flat light source for LCD BLU, this study examined the specific quality. For the phosphor pastes, the low temperature firing acryl resin is used as the binder resin. As the result of thermal decomposition characteristics, residual hydroxylcarbon rested under 0.1wt% on 400$^{\circ}C$. With the manufactured paste in this study, the flat light source device is manufactured through the screen printing and it brought the almost 100% of special quality radiation about the phosphor brightness.

  • PDF

Analysis of Cross-Section Shape Slope of Pillar for Vacuum Glazing according to the Screen Printing Parameters (스크린 인쇄 공정 변수에 따른 진공유리용 필러의 단면형상 기울기 분석)

  • Kim, Jae Kyung;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.43-48
    • /
    • 2012
  • The screen printing method is much used in the flat panel display field including the LCD, PDP, FED, organic EL, and etc. for forming the high precision micro-pattern. Also A number of studies of screen printing method has been conducted as the method for the cost down through the improvement of productivity. Because of being the dot printing method of the cylindrical shape not being the line printing method like the existing PDP barrier rib and phosphor, the pillar arrays using the screen printing method is deposited in the hemispherical type not being cylindrical shape in the existing printing process conditions. In this paper, the parameters were set on the screen printing device in order to deposit the cross-sectional shape with the cone or trapezoid shape of the pillar in depositing the pillars used the screen printing device for vacuum glazing. The cross-sectional shape slope of the pillar according to the parameters was measured. And analysis the effect of the screen printing process conditions on the cross-sectional shape slope of pillars based upon the result of being measured. The processing conditions were drawn to minimize the cross-sectional shape slope of pillar.

The Characteristic of Hybrid X-ray Sensor for Synchrotron Radiation image (싱크로트론 방사선 영상 획득을 위한 Hybrid 기반의 X선 센서 제작 및 특성)

  • Cha, Byong-Yoel;Kang, Sang-Sick;Kim, So-Young;Yoon, Kyoung-Jun;Mun, Chi-Woong;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.68-71
    • /
    • 2004
  • 본 연구는 싱크로트론 방사광의 단색광 (monobeam)을 이용한 영상을 획득하였다. 영상센서로서 CMOS를 사용하였으며 센서 앞단에는 형광체 (phosphor)를 이용하여 방사광에 대한 빛의 신호로서 영상을 획득하였다. 사용된 싱크로트론 방사광의 beam size는 $5mm{\times}2mm$ 이며 ion chamber를 통한 beam intensity 는 $10{\times}10^{-7}$이다. 형광체는 각각 ZnS(Cu:Al), ZnS(Ag,Al), $BiTiO_3$, $Y_2O_2S(Tb)$로서 4가지를 사용하였으며 여기에 사용된 형광체는 기계식 스크린 프린팅 (Screen Printing) 방식으로 직접 제조하였다. 두께는 모두 동일하게 $10{\mu}m$이며 각각에 대한 PL(Photoluminescence)을 측정하여 분석하였다. object로는 물고기와 20linepair를 사용하였으며 CMOS센서를 이용하여 각각의 phosphor에 대하여 영상을 획득하였다. 영상의 평가는 20line pair 영상의 MTF를 이용하였다. 각각의 형광체에 대한 MTF는 5 lp/mm 에서는 0.5650, 0.2150, 0.7890, 0.3840 이며 10 lp/mm 은 0.4500, 0.0900, 0.2510, 0.1500이고 15 lp/mm 는 0.1900, 0.0300, 0.1430, 0.0500이며 마지막으로 20 lp/mm 은 0.0810, 0.004, 0.0500, 0.0320의 MTF 값을 나타내었다. $10{\mu}m$ 두께에 대하여 ZnS(Cu:Al)이 가장 좋은 MTF의 값을 나타내었다.

  • PDF

Luminescence Characteristic of CNT Element in ZnS:(Cu, Al) Thin Film Fabricated by a Screen Printing Method (스크린 프린팅 방법으로 제작한 ZnS:(Cu, AL) 박막의 CNT 불순물 첨가에 의한 광학적 특성에 관한 연구)

  • Shon, Pong-Kyun;Shin, Jun-Ha;Bea, Jae-Min;Lee, Jae-Bum;Kim, Jong-Su;Lee, Sang-Nam
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.1
    • /
    • pp.23-33
    • /
    • 2011
  • This experimental focus to characterize luminescence properties related to CNT (Carbon Nano Tube) element dispersedly implanted in ZnS-based phosphor thin film panel fabricated by a screen printing method. More specifically FE-SEM measurements, L-V(Luminescence vs. Voltage) and photo luminescence were carried out to determine an optimum value of CNT concentration and film thickness for the thin film structure of CNT-ZnS:(Cu, Al) by the screen printing method. We confirmed that an optimum value of CNT concentration in the ZnS:(Cu, Al) film panel is about 0.75 wt% resulting that the electric conductivity is 1.6 times higher than that of pure CNT sample and showing that the luminescence intensity is increasing until the optimum concentration. Clearly, CNT is presenting in the luminescence process providing a pathway for the creation of hot electron and a channel for the electron-hole recombination but overly inserted CNT may hinder to produce the hot electron for making an avalanching process. In case of the overly doped CNT 1.0 wt% in the ZnS-based phosphor, the luminescence intensity is decreasing although the electric conductivity is exponentially increasing. Based on these results, we realized that hot electron occurred by the external electric field or exciton arose by the external photon source are reduced dramatically over the critical value of CNT concentration because CNT element provide various isolated residues in the composites of ZnS based phosphor rather than pathway or channel for the D-A(Donnor to Acceptor) pair transition or the radiative recombination of electron-hole.

Optical Monte Carlo Simulation on Spatial Resolution of Phosphor Coupled X-ray Imaging Detector (형광체 결합형 X선 영상검출기의 공간 해상력 몬테카를로 시뮬레이션)

  • Kang, Sang-Sik;Kim, So-Yeong;Shin, Jung-Wook;Heo, Sung-Wook;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.328-328
    • /
    • 2007
  • Large area matrix-addressed image detectors are a recent technology for x-ray imaging with medical diagnostic and other applications. The imaging properties of x-ray pixel detectors depend on the quantum efficiency of x-rays, the generated signal of each x-ray photon and the distribution of the generated signal between pixels. In a phosphor coated detector the light signal is generated by electrons captured in the phosphor screen. In our study we simulated the lateral spread distributions for phosphor coupled detector by Monte Carlo simulations. Most simulations of such detectors simplify the setup by only taking the conversion layer into account neglecting behind. The Monte Carlo code MCNPX has been used to simulate the complete interaction and subsequent charge transport of x-ray radiation. This has allowed the analysis of charge sharing between pixel elements as an important limited factor of digital x-ray imaging system. The parameters are determined by lateral distribution of x-ray photons and x-ray induced electrons. The primary purpose of this study was to develop a design tool for the evaluation of geometry factor in the phosphor coupled optical imaging detector. In order to evaluate the spatial resolution for different phosphor material, phosphor geometry we have developed a simulation code. The developed code calculates the energy absorption and spatial distribution based on both the signal from the scintillating layer and the signal from direct detection of x-ray in the detector. We show that internal scattering contributes to the so-called spatial resolution drop of the image detector. Results from the simulation of spatial distribution in a phosphor pixel detector are presented. The spatial resolution can be increased by optimizing pixel size and phosphor thickness.

  • PDF

Dependence of Xe Plasma Flat Fluorescent Lamp On the Electrode Gap and Dielectric Layer Thickness

  • Kang, Jong-Hyun;Lee, Yang-Kyu;Heo, Sung-Taek;Oh, Myung-Hoon;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1519-1521
    • /
    • 2007
  • In this work, a coplanar-type plasma flat fluorescent lamp having cross type of electrode was fabricated by screen printing and sealing technique. Cross type of electrode with a dielectric layer were screen-printed on a rear glass plate, and then fired at $550^{\circ}C$. Phosphor was printed on and fired at $450^{\circ}C$. Finally, the lamp was sealed by frit glass at $450^{\circ}C$. The lamp of cross electrode type was studied depending on the electrode gap and the thickness of dielectric layer.

  • PDF