• 제목/요약/키워드: phosphor materials

검색결과 531건 처리시간 0.029초

PVA 용액법과 국산 산화알루미늄을 적용하여 대기 플라즈마 용사법으로 합성된 구형의 YAG:Ce3+ 형광체의 발광특성 (Optical Properties of Spherical YAG:Ce3+ Phosphor Powders Synthesized by Atmospheric Plasma Spraying Method Appling PVA Solution Route and Domestic Aluminium Oxide Seed)

  • 김용현;이상진
    • 한국분말재료학회지
    • /
    • 제30권5호
    • /
    • pp.424-430
    • /
    • 2023
  • YAG phosphor powders were fabricated by the atmospheric plasma spraying method with the spray-dried spherical YAG precursor. The YAG precursor slurry for the spray drying process was prepared by the PVA solution chemical processing utilizing a domestic easy-sintered aluminum oxide (Al2O3) powder as a seed. The homogenous and viscous slurry resulted in dense granules, not hollow or porous particles. The synthesized phosphor powders demonstrated a stable YAG phase, and excellent fluorescence properties of approximately 115% compared with commercial YAG:Ce3+ powder. The microstructure of the phosphor powder had a perfect spherical shape and an average particle size of approx imately 30 ㎛. As a result of the PKG test of the YAG phosphor powder, the synthesized phosphor powders exhibited an outstanding luminous intensity, and a peak wavelength was observed at 531 nm.

Synthesis and Optical Characteristics of Green-Emitting (Mg,Zn)$Al_2O_4:Mn^{2+}$ Phosphor for 3D- PDP Applications

  • Han, Bo-Yong;Yoo, Jae-Soo;Heo, Eun-Gi;Yoo, Young-Gil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.272-275
    • /
    • 2009
  • A new green phosphor, ($Mg_{1-x-yZnx)$)$Al_2O_4:Mn^{2+}{_y}$ (0 x 0.6, 0.001 y 0.01), was synthesized by a flux-assisted solid reaction and its vacuum ultraviolet (VUV) excitation and emission characteristics were examined in this study. The chromaticity and peak intensity of the $(Mg_{0.79}Zn_{0.2})Al_2O_4:Mn^{2+}{_{0.01}}$ (x = 0.177, y = 0.745) phosphor were found to be more desirable than that of $Zn_2SiO_4:Mn^{2+}$ (x = 0.216, y = 0.72) phosphor as a green primary color.

  • PDF

High-power LED용 ceramic 형광체 plate 제조 및 발광 특성 분석 (Fabrication and analysis of luminous properties of ceramic phosphor plate for high-power LED)

  • 지은경;송예림;이민지;송영현;윤대호
    • 한국결정성장학회지
    • /
    • 제25권1호
    • /
    • pp.35-38
    • /
    • 2015
  • LED는 소비전력 절감, 사용수명 증가, 발광 파장 변화를 통한 다변적 적용이 가능하여 에너지 효율 증대의 대안으로 각광받고 있으며, 조명뿐만 아니라 디스플레이 백라이트, 차량용 헤드라이트 등 다양한 분야에 적용되고 있다. 현재 백색 LED를 구현하는 데에는 청색 LED와 황색 형광체를 혼합하는 방식이 주로 활용되며, 황색 형광체로는 YAG : $Ce^{3+}$가 많이 이용된다. 기존에는 형광체를 epoxy resin과 혼합하여 LED chip 위에 도포하여 경화시키는 패키징 방식을 주로 사용하였다. 하지만 페이스트 기반 패키징 방식은 열에 의한 형광체의 특성 저하와 효율 감소 문제를 일으킨다. 이러한 문제를 해결하기 위해 형광체 플레이트를 이용한 remote 방식이 이용되고 있지만, 플레이트 내부 전반사로 인한 광 효율 손실 또한 해결해야 할 문제이다. 본 연구에서는 플레이트 측면을 Ag로 코팅함으로써 플레이트 내부의 전반사에 의한 광 효율 손실을 해결하고자 하였다.

Application of $Sr_3SiO_5$:Eu yellow phosphor for white light-emitting diodes

  • Park, Joung-Kyu;Kim, Chang-Hae;Park, Hee-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.676-678
    • /
    • 2004
  • In order to develop new yellow phosphor that emit efficiently under the 450 - 470 nm excitation range, we have synthesized a $Eu^{2+}$-activated $Sr_3SiO_5$ yellow phosphor and investigated an attempt to develop white LEDs by combining it with a InGaN blue LED chip (460 nm). Two distinct emission bands from the InGaN-based LED and the $Sr_3SiO_5$:Eu phosphor are clearly observed at 460 nm and at 570 nm, respectively. These two emission bands combine to give a spectrum that appears white to the naked eye. Our results showed that InGaN (460 nm chip)-based $Sr_3SiO_5$:Eu exhibits a better luminous efficiency than that of the industrially available product InGaN (460 nm chip)-based YAG:Ce.

  • PDF

Photoluminescence and cathodoluminescence properties of Tb-activated calcium zirconate phosphor

  • Lee, Dae-Won;Oh, Jae-Suk;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1523-1525
    • /
    • 2005
  • $CaZrO_3:Tb$ as a new green-emitting phosphor, has been synthesized by solid state reaction. Photoluminescence and cathodoluminescence properties for the phosphor with a Perovskite structure were investigated. The $CaZrO_3:Tb$ phosphor, which has several emission peaks due to energy transfer from $^5D_4$ to $^7F_J(J=6,5,4,3)$ of $Tb^{3+}$ ion, exhibited strong green luminescence with the main emission peak centered at 545 nm. Optimum Tb concentration was 0.02mol%.

  • PDF

Luminescent Properties of Two-Ions Doped Phosphors for LED Application

  • Kim, Tae-Gon;Kim, Young-Sic;Im, Seoung-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.52-55
    • /
    • 2009
  • A red phosphor, $(Sr,Ca)_2P_2O_7:Eu^{2+},Mn^{2+}$, for UV-LED was synthesized under a reducing atmosphere, and its luminescent properties were investigated. The phosphor absorbs ultraviolet light at around 400 nm and efficiently emits red light at approximately 610 nm through an energy transfer from $Eu^{2+}$ to $Mn^{2+}$. Using the varied input current test for the phosphor-loaded LED lamps, it was found that the luminescent efficiency of the phosphor decreased with increasing light flux. This might be due to an increased probability of excited-state absorption and the consequent non-radiative relaxation in $Mn^{2+}$ ions in the condition of high photon influx.

  • PDF

Luminescence property of Eu2+ in SiO2-Al2O3 glass phosphor

  • Chae, Ki Woong;Lee, Kyoung-Ho;Cheon, Chae Il;Cho, Nam In;Kim, Jeong Seog
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc2호
    • /
    • pp.189-192
    • /
    • 2012
  • Manufacturing process for silicate glass phosphors containing Eu2+ activator and their photoluminescence property have been studied. We adopted powder sintering process instead of traditional glass melting process for making glass phosphor. At first, phosphor powders were synthesized at 1200 ℃ for 2-3 hours under a reducing atmosphere with 10% H2-90% N2 gas mixture. The reduced powders were compacted into discs and then the discs weresintered at 1400 ~ 1500 ℃ for 1 hr under a reducing atmosphere of 5H2-95% N2. The enhancement of PL intensity by Al2O3 addition, XPS binding energy shift of Si 2p and O 1s, sintering shrinkage, and crystallization were characterized.

Effect of mixed alkaline earth doping on phosphorence properties of $BaAl_2O_4:Eu^{2+}$, $Dy^{3+}$

  • Singh, B.K.;Ryu, R.J.
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2006년도 추계학술대회 발표 논문집
    • /
    • pp.22-25
    • /
    • 2006
  • Long lasting phosphor materials are in great demand for their applications in the area of light emitting diodes (LEDs), commercial displays and warning signals. After glow longevity, brightness, photo-resistance and chemical and environment stability are most important qualities that are desired for these materials. Alumina as host lattice with various rare earth elements has been found to be good at the same time inexpensive material for the synthesis of the phosphor materials. This communication explored the effect of mixed rare earth metal on the luminescence properties of these materials for the first time. Various permutations and combinations of $Sr^{2+}$ and $Ba^{2+}$ have been investigated in order to achieve robust and high luminescence characteristics in the tailored phosphor materials.

  • PDF

Luminescent characteristics of a blue-emitting $CaAl_2Si_2O_8:Eu^{2+}$ phosphor and the effect of boron ion substitution

  • Kwon, Byoung-Hwa;Vaidyanathan, Sivakumar;Li, Hui;Jang, Ho-Seoung;Yoo, Hyoung-Sun;Jeon, Duk-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.578-580
    • /
    • 2008
  • Blue-emitting $CaAl_2Si_2O_8:Eu^{2+}(CAS:Eu^{2+})$ phosphor, prepared by solid-state reaction, is described in this paper. We researched the effect of boron ion substitution in the host materials. The phase and luminescent properties were investigated using the powder X-ray diffraction(XRD) and photoluminescence(PL) spectra.

  • PDF