• Title/Summary/Keyword: phospholipase

Search Result 611, Processing Time 0.023 seconds

Phospholipase D Activity is Elevated in Hepatitis C Virus Core Protein-Transformed NIH 3T3 Mouse Fibroblast Cells (C형 간염바이러스의 core 단백질에 의해 암화된 쥐의 섬유아세포에서 phospholipase D 효소활성의 증가)

  • Kim, Joonmo;Jung, Eun-Young;Jang, Kyung-Lib;Min, Do-Sik
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.551-558
    • /
    • 2003
  • Hepatitis C Virus (HCV) is associated with a severe liver disease and increased frequency in the development of hepatocellular carcinoma. Overexpression of HCV core protein is known to transform fibroblast cells. Phospholipase D (PLD) activity is commonly elevated in response to mitogenic signals, and PLD has been also reported to be overexpressed and hyperactivated in some human cancer. The aim of this study was to understand how PLD can be regulated in HCV core protein-transformed NIH3T3 mouse fibroblast cells. We observed that in unstimulated state, basal PLD activity was higher in NIH3T3 cells overexpressing HCV core protein than in vector-transfected cells. Although expression of PLD and protein kinase C (PKC) in core protein-transformed cells was similar with that of control cells, phorbol 12-myristate 13-acetate (PMA), which is known to activate PKC, stimulated significantly PLD activity in core protein-transformed cells, compared with that of the control cells. PLD activity assay using PKC isozyme-specific inhibitor, and PKC translocation experiment showed that PKC-$\delta$ was mainly involved in the PMA-induced PLD activation in the core-transformed cells. Taken together, these results suggest that PLD might be implicated in core protein-induced transformation.

The Production Mechanism of TNF-${\alpha}$ and IL-6 by Group IIA Phospholipase $A_2$ (IIA형 Phospholipase $A_2$에 의한 TNF-${\alpha}$와 IL-6 생성 기전)

  • Ahn, Jae-Hong;Park, Dae-Won;Kim, Jin-Hee;Bae, Jei-Jun;Bae, Yeun-Kyoung;Park, Yoon-Ki
    • Journal of Yeungnam Medical Science
    • /
    • v.21 no.2
    • /
    • pp.177-190
    • /
    • 2004
  • Background: Secretory phospholipase $A_2$ ($sPLA_2$) are a group of extracellular enzymes that release fatty acids at the sn-2 position of phospholipids. Group IIA $sPLA_2$ ($sPLA_2$-IIA) has been detected in the inflammatory fluids, and its plasma level increases in the inflammatory disease. This study examined the effect of $sPLA_2$-IIA on mouse macropahges in order to investigate the potential mechanism of $sPLA_2$-induced inflammation. Materials and Methods: Wild type $PLA_2$ and mutant H48Q $PLA_2$ were purified from HEK293 cells transfected with the corresponding plasmids, and the $PLA_2$ activities were measured using 1-palmitoyl-2-[1-$^{14}C$]linoleoyl-3-phosphatidylethanolamine as substrates. The TNF-${\alpha}$ and IL-6 released in the supernatants were determined by ELISA. In addition, the TNF-${\alpha}$ and IL-6 mRNA were analyzed by RT-PCR. Results: $sPLA_2$-IIA stimulated the production of TNF-${\alpha}$ and IL-6 in a dose- and time-dependent manner. In addition, the effect of $sPLA_2$-IIA on cytokine production from the macrophage was found to be associated with the accumulation of their specific mRNA. The mRNA levels of TNF-${\alpha}$ and IL-6 peaked at 2 and 6 hours in a time-dependent manner, respectively. Conclusion: In conclusion, the production of proinflammatory cytokine might be mediated by the binding of $sPLA_2$-IIA to the receptors.

  • PDF

Effects of Ginsenosides on the Mechanism of Histamine Release in the Guinea Pig Lung Mast Cells Activated by Specific Antigen-Antibody Reactions

  • Ro, Jai-Youl;Ahn, Young-Soo;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.445-456
    • /
    • 1997
  • We previously reported that some components of ginsenosides decreased mediator releases evoked by the activation of mast cells with specific antigen-antibody reactions. This study aimed to assess the effects of ginsenosides ($Rb_2$, Re) on the mechanism of histamine release in the mast cell activation. We partially purified guinea pig lung mast cells by using enzyme digestion, the rough and the discontinuous percoll density gradient method. Mast cells were sensitized with $IgG_1$ and challenged with ovalbumin (OA). Histamine was assayed by fluorometric analyzer, leukotrienes by radioimmunoassay. Phospholipase D (PLD) activity was assessed more directly by the production of $[^3H]phosphatidylbutanol$ (PBut) which was produced by PLD-mediated transphosphatidylation in the presence of butanol. The amount of 1,2- diacylglycerol (DAG) were measured by the $[^3H]DAG$ labeled with $[^3H]palmitic$ acid or $[^3H]myristic$ acid. Pretreatment of $Rb_2$ ($300\;{\mu}g$) significantly decreased histamine release by 60%, but Re ($300\;{\mu}g$) increased histamine release by 34%. Leukotrienes release in $Rb_2$ was decreased by 40%, Re was not affected in the leukotrienes release during mast cell activations. An increasing PLD activity during mast cell activation was decreased by the dose-dependent manner in the pretreatment of $Rb_2$, but Re pretreatment facilitated the increased PLD activity during mast cell activation. The amount of DAG produced by phospholipase C (PLC) activity was decreased by $Rb_2$ pretreatment, but Re pretreatment was not affected. The amount of mass DAG was decreased by $Rb_2$ and Re pretreatment during mast cell activation. The data suggest that $Rb_2$ purified from Korean Red Ginseng Radix inhibits the DAG which is produced by the activation of mast cells with antigen-antibody reactions via both phosphatidylinositide-PLC and phosphatidylcholine-PLD systems, and then followed by the inhibition of histamine release. However, Re increases histamine release by stimulation of DAG production, which is mediated by phosphatidylcholine-PLD system rather than by phosphatidylinositide-PLC system, but inhibits the mass DAG production. Thus, it could be inferred that other mechanisms play a role in the increase of histamine release during mast cell activation.

  • PDF

Effects of Protein Kinase G on Phospholipase D Activity of Human Neutrophils (호중구에서 phospholipase D의 활성에 대한 protein kinase G의 영향)

  • 박지연;이민정;장민정;이선영;배외식;곽종영
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.903-910
    • /
    • 2003
  • Phospholipase D (PLD) plays an important role as a signaling molecule in the activation of neutrophils. In this study, effect of nitric oxide (NO) and cGMP on the activation of PLD in human neutrophils was investigated. Sodium nitroprusside (SNP), an agent to produce NO spontaneously in cells, alone increased PLD activity and the maximal activation was obtained with 0.5 mM SNP. Dibutyryl-cAMP, an agent to increase an intracellular cAMP concentration inhibited formyl-Met-Leu-Phe (fMLP)-stimulated PLD activity but 8-bromo-cGMP (300 $\mu$M), an agent to increase an intracellular cGMP concentration did not affect basal and fMLP-stimulated PLD activity. NO-induced activation of PLD was not blocked by KT 5823, an inhibitor of cGMP-dependent protein kinase (PKG), suggesting that NO-induced PLD activation is not mediated by cGMP. NO also stimulated p38 mitogen activated protein kinase (MAPK) in human neutrophils, indicated by increased phosphorylation of p38 MAPK in Western blotting. NO-induced phosphorylation of p38 MAPK was not inhibited by KT 5823 or n-butanol. RhoA, an regulatory factor of PLD activation was trans-located from cytosolic fraction to plasma membranes by fMLP or phorbol ester, and fMLP-stimulated but not phorbol ester-stimulated translocation of RhoA was inhibited by cGMP. These results suggest that NO stimulates PLD activity through other unidentified facto.(s) than cGMP even though cGMP inhibits the artivation of RhoA.

Regulation of Phospholipase D by CoCl2 in Human Glioblastoma Cells (인간 교세포주에서 CoCl2에 의한 phospholipase D의 조절기전)

  • Lee, Seung-Hoon;Min, Gye-Sik;Min, Do-Sik
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.691-698
    • /
    • 2006
  • Phospholipase D (PLD) is known to play an important role in a variety of cells. However, little is known about $CoCl_2-mediated$ PLD signaling. In this study we demonstrated for the first time that $CoCl_2$ stimulates PLD activity and increases expression of cyclooxygenase-2 (COX-2), which is known to mediate inflammatory reaction. $CoCl_2-induced$ PLD activity was assessed by measuring the formation of $[^3H]$ phosphatidylbutanol (PtdBut), the product of PLD-mediated transphosphatidylation, in the presence of 1-butanol. To study mechanism of PLD signaling induced by $CoCl_2$, U87 human glioblastoma cells were stimulated by $CoCl_2$ and regulators of PLD activity induced by $CoCl_2$ were investigated using several inhibitors of signaling proteins. Moreover, PLD activation by $CoCl_2$ increased not only expression of COX-2 protein but also COX-2 promoter activity. In summary, these results suggest that $CoCl_2$ increases expression of COX-2 protein via PLD in human U87 glioblastoma cells.

Activation of Phospholipase Cγ by Nitric Oxide in Choriocarcinoma Cell Line, BeWo Cells (Choriocarcinoma 세포주 BeWo 세포에서 nitric oxide에 의한 phospholipase Cγ 의 활성)

  • 차문석;곽종영
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.849-855
    • /
    • 2003
  • Nitric oxide (NO) plays an important role as a signaling molecule in the proliferation of placenta trophoblasts. In this study, we investigated the effect of NO on the activation of phospholipase C (PLC) in BeWo cells, choriocar-cinoma cell line. Sodium nitroprusside (SNP), an agent to produce NO spontaneously in cells, alone increased $[^3H]$ thymidine incorporation of BeWo cells, indicating NO stimulates proliferation of the cells. NO-induced proliferation of BeWo cells was blocked by U73122, an inhibitor of PLC, suggesting that NO-induced PLC activation is involved in the cell proliferation. NO also stimulated extracellular signal-regulated kinase (ERK) in BeWo cells, indicated by increased phosphorylation of ERK1/2 in Western blotting using anti-phospho-ERK1/2 antibody. NO-induced phos-phorylation of ERK1/2 was not abrogated by U73122. $PLC\gamma_1$l but not$PLC\gamma_2$ was tyrosine phosphorylated by SNP in immunoprecipitation assay using anti-$PLC\gamma_1$/$PLC\gamma_2$ antibodies, and SNP-induced phosphorylation of $PLC\gamma_1$ was abrogated by pre-treatment of cells with genistein and PD98059, indicating that NO induced-phosphorylation of $PLC\gamma_1$ is mediated by ERK. These results suggest that NO stimulates the proliferation of BeWo cells through ERK and $PLC\gamma_1$.

The Analgesic Effects of Apitoxin and its Mechanism via JOR and Measuring Expression of mRNA in Phospholipase and TPH using RT-PCR (Jaw Opening Reflex 및 RT-PCR을 이용한 봉독의 진통효과)

  • Cho, Kwang-Ho;Lee, Jae-Dong;Park, Dong-Suk;Ahn, Byoung-Choul
    • Journal of Pharmacopuncture
    • /
    • v.3 no.1
    • /
    • pp.35-51
    • /
    • 2000
  • The purpose of this study is to prove the analgesic effects of apitoxin and its mechanism via jaw-opening reflex(JOR) and measuring expression of mRNA in Phospholipase and Tryptophan hydroxylase(TPH) using RT-PCR. The experiments were carried out on Sprague-Dawley rats(300-400g) and mastocytoma(P-185 HTR) for JOR and RT-PCR, respectively. Rats anesthetized with thiopental sodium (80mg/kg) were used in the Tooth Pulp stimulation induced JOR. The amplitude of a digastric electromyogram (dEMG) was recorded during the stimulation at an intensity of 1.5 times the threshold for JOR. Apitoxin used in this experiment was diluted with normal saline by 1:1000. Apitoxin was injected intravenously into the test group while normal saline to the control group. However, it was injected directly into the cell of mastocytoma. We referred to base sequence registered in Genbank in designing primers for RT-PCR. The results were as follows; (1)Compared with control group, analgesic effect started to show right after Sprague-Dawely rats were treated with apitoxin($71.50{\pm}8.08$) and lasted for 50 minutes. (2)As a result of the experiment of RT-PCR, we witnessed significant changes in the degree of expression of phospholipase or rate-limiting enzyme of biosynthesis of prostaglandins with $10{\mu}g/ml$ apitoxin.($31.74{\pm}18.98%$, P<0.05) (3)As a result of the experiment of RT-PCR, we witnessed significant changes in the degree of expression of TPH or rate-limiting enzyme in biosynthesis of serotonin with $10{\mu}g/ml$ apitoxin.($131.37{\pm}16.87%$, P<0.05). These results suggest that $10{\mu}g/ml$ apitoxin have the most analgesic effects. This study showed that apitoxin has analgesic effects and held good for 50 minutes. The injection of apitoxin has brought out changes in the degree of expression of phospholipase and TPH. These results strongly suggest that analgesic mechanism by apitoxin is closely related to prostaglandins and serotonin.

The responsibility of C-terminal domain in the thermolabile haemolysin activity of Vibrio parahaemolyticus and inhibition treatments by Phellinus sp. extracts

  • Tran Thi Huyen;Ha Phuong Trang;Nguyen Thi-Ngan;Bui Dinh-Thanh;Le Pham Tan Quoc;Trinh Ngoc Nam
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.3
    • /
    • pp.204-215
    • /
    • 2023
  • The thermolabile haemolysin (tlh) of Vibrio parahaemolyticus (Vptlh) from V. parahaemolyticus is a multiple-function enzyme, initially describes as a haemolytic factor activated by lecithin and phospholipase A2 enzymatic activity (Shinoda, 1991; Vazquez-Morado, 2021; Yanagase et al., 1970). Until now, the tlh structure has hypothesized including N-terminal and C-terminal domain, but what domain of the Vptlh structure does the haemolytic activity has not been refined yet. In this study, a 450-bp VpTLH nucleotide sequence of the entire Vptlh gene encoded the C-terminal domain cloned firstly to examine its responsibility in the activity of the Vptlh. The C-terminal domain fused with a 6-His-tag named the His-tag-VpC-terminal domain was expressed successfully in soluble form in the BL21 (DE3) PlysS cell. Remarkably, both expression and purification results confirmed a high agreement in the molecular weight of the His-tag-VpC-terminal domain was 47 kDa. This work showed the His-tag-VpC-terminal domain lysed the erythrocyte membranes in the blood agar and the phosphate buffered saline (0.9%) media without adding the lecithin substrate of the phospholipase enzyme. Haemolysis occurred at all tested diluted concentrations of His-tag-VpC-terminal domain (p < 0.05), providing evidence for the independent haemolytic activity of the His-tag-VpC-terminal domain. The content of 100 ㎍ of the His-tag-VpC-terminal domain brought the highest haemolytic activity of 80% compared to that in the three remaining contents. Significantly, the His-tag-VpC-terminal domain demonstrated not to involve the phospholipase activity in Luria-Bertani agar supplemented with 1% (vol/vol) egg yolk emulsion. All results proved the vital responsibility of the His-tag-VpC-terminal domain in causing the haemolytic activity without the required activation by the phospholipase enzyme. Raw extracts of Phellinus igniarus and Phellinus pipi at 10-1 mg/mL inhibited the haemolytic activity of the His-tag-VpC-terminal domain from 67.7% to 87.42%, respectively. Hence applying the His-tag-VpC-terminal domain as a simple biological material to evaluate quickly potential derivatives against the Vptlh in vivo conditions will accessible and more advantageous than using the whole of the Vptlh.