• 제목/요약/키워드: phosphoinositide 3-kinase

검색결과 111건 처리시간 0.032초

RAW 264.7 세포에서 담배잎산말의 TLR4/MAPKs/NF-κB 신호전달체계 조절을 통한 항염증 효과 (Desmarestia tabacoides Ameliorates Lipopolysaccharide-induced Inflammatory Responses via Attenuated TLR4/MAPKs/NF-κB Signaling Cascade in RAW264.7 Cells)

  • 윤현서;안현;박충무
    • 생명과학회지
    • /
    • 제33권6호
    • /
    • pp.463-470
    • /
    • 2023
  • Desmarestia tabacoides Okamura는 전 세계적으로 널리 분포하는 갈조류 중 하나이다. 몇몇 산말류의 항종양, 멜라닌 생성 억제 및 광보호 활성에 대한 연구는 있었으나 D. tabacoides Okamura의 항염증 기전에 대해서는 보고되지 않아 본 연구에서는 LPS (lipopolysaccharide)로 자극된 RAW 264.7 세포에서 D. tabacoides Okamura 에탄올 추출물(DTEE)의 항염증 기전을 inducible nitric oxide synthase (iNOS)와 cyclooxygenase (COX)-2의 발현 및 이들의 상위신호전달물질인 nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK) 그리고 phosphoinositide-3-kinase (PI3K)/Akt의 인산화 조절 정도를 통해 분석하였다. DTEE의 처리는 세포 독성 없이 LPS로 유도된 NO와 prostaglandin (PG) E2의 생성과 이들의 생성 효소인 iNOS 및 COX-2의 발현을 유의하게 억제하였다. 그리고 LPS에 의해 활성화된 NF-κB 및 상위 신호 전달 물질인 extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) 및 p38은 DTEE 처리에 의해 유의적으로 억제되었다. DTEE의 처리는 RAW 264.7 세포에서 LPS에 의해 활성화되는 adaptor molecule인 Toll-like receptor (TLR) 4 및 myeloid differentiation primary response (MyD) 88 또한 유의적으로 억제하였다. 이 결과를 통해 DTEE는 LPS에 의해 유도된 TLR4와 NF-κB 및 MAPK의 활성을 억제함으로써 염증 매개인자의 발현을 조절하였고, 이는 DTEE가 염증을 완화할 수 있는 기능성 식품의 소재로써 유용하게 사용될 수 있음을 시사한다.

Oncogenesis and the Clinical Significance of K-ras in Pancreatic Adenocarcinoma

  • Huang, Chun;Wang, Wei-Min;Gong, Jian-Ping;Yang, Kang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.2699-2701
    • /
    • 2013
  • The RAS family genes encode small GTP-binding cytoplasmic proteins. Activated KRAS engages multiple effector pathways, notably the RAF-mitogen-activated protein kinase, phosphoinositide-3-kinase (PI3K) and RalGDS pathways. In the clinical field, K-ras oncogene activation is frequently found in human cancers and thus may serve as a potential diagnostic marker for cancer cells in circulation. This mini-review aims to summarise information on Ras-induced oncogenesis and the clinical significance of K-ras.

Protein Kinase B Inhibits Endostatin-induced Apoptosis in HUVECs

  • Kang, Hee-Young;Shim, Dong-Hwan;Kang, Sang-Sun;Chang, Soo-Ik;Kim, Hak-Yong
    • BMB Reports
    • /
    • 제39권1호
    • /
    • pp.97-104
    • /
    • 2006
  • Endostatin is a tumor-derived angiogenesis inhibitor, and the endogenous 20 kDa carboxyl-terminal fragment of collagen XVIII. In addition to inhibiting angiogenesis, endostatin inhibits tumor growth and the induction of apoptosis in several endothelial cell types. However, the mechanisms that regulate endostatin-induced apoptotic cell death are unclear. Here, we investigated apoptotic cell death and the underlying regulatory mechanisms elicited of endostatin in human umbilical vein endothelial cells (HUVECs). Endostatin was found to induce typical apoptotic features, such as, chromatin condensation and DNA fragmentation in these cells. Thus, as the phosphoinositide 3-OH kinase (PI3K)/protein kinase B (PKB) signaling pathway has been shown to prevent apoptosis in various cell types, we investigated whether this pathway could protect cells against endostatin induced apoptosis. It was found that the inhibition of PI3K/PKB significantly increased endostatin-induced apoptosis, and that endostatin-induced cell death is physiologically linked to PKB-mediated cell survival through caspase-8.

산화성 손상을 받은 N18D3세포에서 Epigallocatechin gallate가 Phosphoinositide 3-kinase/Akt 및 Glycogen synthase kinase-3경로에 미치는 효과 (Effect of Epigallocatechin Gallate on Phosphoinositide 3-kinase/Akt and Glycogen Synthase Kinase-3 Pathway in Oxidative-stressed N18D3 Cells Following $H_2O_2$ Exposure)

  • 고성호;권혁성;오화순;오재호;박윤주;김준규;김기석;김용순;양기화;김승업;김승현;정해관
    • 한국임상약학회지
    • /
    • 제13권1호
    • /
    • pp.29-39
    • /
    • 2003
  • Neurodegenerative disorders are associated with apoptosis as a causing factor or an inducer. On the other hand, it has been reported that epigallocatechin gallate (EUG), one of antioxidants and flavonoids, and z-VAD-fmk, a nonselective caspase inhibitor, suppress oxidative-radical-stress-induced apoptosis. However, it is not yet known what is the effects of EGCG and z-VAD-fmk on the apoptotic pathway is through phosphoinositide 3-kinase (PI3K), Akt and glycogen synthase kinase-3 (GSK-3) as well as mitochondria, caspase-3 and poly (ADP-ribose) polymerase (PARP). We investigated the effects of EGCG by using $H_2O_2$ treated N18D3 cells, mouse DRG hybrid neurons. Methods: Following 30 min $100\;{\mu}m\;H_2O_2$ exposure, the viability of N18D3 cells (not pretreated vs. EGCG or z-VAD-fmk pretreated) was evaluated by using MTT assay. The effect of EGCG on immunoreactivity (IR) of cytochrome c, caspase-3, PARP, PI3K/Akt and GSK-3 was examined by using Western blot, and was compared with that of z-Y4D-fmk. Results: EGCG or z-VAD-fmk pretreated N18D3 cells showed increased viability. Dose-dependent inhibition of caspase-3 activation accompanied by PARP cleavage were demonstrated by pretreatment of both agents. However, inhibition of cytochrome c release was only detected in EGCG pretreated N18D3 cells. On the pathway through PI3K/Akt and GSK-3, however, the result of Western blot in EGCG pretreated N18D3 cells showed decreased IR of Akt and GSK-3 and increased IR of p85a PI3K, phosphorylated Akt and GSK-3, and contrasted with that in z-VAD-fmk pretreated N18D3 cells showing no changes on each molecule. Conclusion: These data show that EGCG affects apoptotic pathway through upstream signal including PI3K/Akt and GSK-3 pathway as well as downstream signal including cytochrome c and caspase-3 pathway. Therefore, these results suggest that EGCG mediated activation of PI3K/Akt and inhibition GSK-B could be new potential therapeutic strategy for neurodegenerative diseases associated with oxidative injury.

  • PDF

RAW 264.7 세포에서 Lycopene의 MAPK/Nrf2/HO-1 신호 전달 체계를 통한 항산화 효과 (Anti-oxidative Activity of Lycopene Via the Induction of HO-1 Expression by MAPK/Nrf2 Signaling Pathway in RAW 264.7 Cells)

  • 박충무;안현;윤현서
    • 대한통합의학회지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2024
  • Purpose: Lycopene is abundantly contained in Tomatoes and is known for diverse biological activities such as antioxidant, anti-inflammatory, and anticancer effects. In this study, the antioxidative potential of lycopene was investigated through the induction of hemeoxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor2 (Nrf2) and upstream signaling molecules, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Aktin RAW 264.7 cells. Methods: The antioxidative potential of lycopene against oxidative stress and its molecular mechanisms were determined by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results: Lycopene treatment significantly attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS formation in a dose-dependent manner without any cytotoxicity. In addition, 50 µM of lycopene for 6 h treatment induced potent HO-1 expression and its transcription factor, Nrf2. MAPK and PI3K/Aktwere also analyzed due to their critical roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, phosphorylation of extracellular regulated kinase (ERK) was significantly induced by lycopene treatment while the activated status of c-Jun NH2-terminal kinase (JNK), p38, and Akt, were not given any effect. To confirm the antioxidative mechanism of HO-1 mediated by ERK activation, each selective inhibitor was employed in a protection assay, in which oxidative damage occurred by t-BHP. Lycopene, SnPP, and CoPP treatments reflected accelerated HO-1 expression could be a protective role against oxidative damage-initiated cell death. A selective inhibitor for ERK significantly inhibited the lycopene-induced cytoprotective effect but selective inhibitors for other signaling molecules did not attenuate the rate of t-BHP-induced cell death. Conclusion: In conclusion, lycopene potently scavenged intracellular ROS formation and enhanced the HO-1 mediated antioxidative potential through the modulation of Nrf2, MAPK signaling pathway in RAW 264.7 cells.

Phospholipase C isozyme들과 조절물질 선별체계

  • 민도식;이영한;서판길;류성호
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1993년도 제2회 신약개발 연구발표회 초록집
    • /
    • pp.63-63
    • /
    • 1993
  • Phospoinositide-specific phospholipase C (PLC)는 세포막의 phosphoinositide를 분해하여 inositol phosphates와 diacylglycerol을 전달하는데 핵심적인 효소이다. PLC는 분자량과 1차구조의 비교에 의하여 type (PLC-$\beta$, ${\gamma}$, $\delta$)로 구분되며, 각 type마다 2-4종의 subtype이 존재하고 PLC isozyme들에 대한 현재가지의 각종 신호 전달 및 조절에 대한 연구를 종합하면: (1) PLC-$\beta$ type은 G-protein과 연결되어 신호를 전달받고, (2) PLC-${\gamma}$ type은growth factor receptor tyrosine kinase에 의하여 인산화 되어 활성화됨으로, 세포의 성장 신호를 전달하며. (3) PLC-$\delta$ type에 대한 신호 전달이나 조절은 밝혀지지 않고 있다.

  • PDF

류마티스 관절염 환자의 말초혈액 단핵세포에서 Phosphoinositide 3-Kinase (PI3K)/Akt와 Nuclear Factor KappaB (NF-κB) 신호전달을 통한 IL-17 생성조절 (Regulation of Interleukin-17 Production in Patients with Rheumatoid Arthritis by Phosphoinositide 3-kinase (PI3K)/Akt and Nuclear Factor KappaB (NF-κB) Dependent Signal Transduction Pathway)

  • 김경운;조미라;이상헌;민소연;박미경;박성환;주대명;김호연
    • IMMUNE NETWORK
    • /
    • 제3권4호
    • /
    • pp.310-319
    • /
    • 2003
  • Inflammatory mediators has been recognized as an important role in the pathogenesis of rheumatoid arthritis (RA). IL-17 is increasingly recognized as an important regulator of immune and inflammatory responses, including induction of proinflammatory cytokines and osteoclastic bone resorption. Evidence of the expression and proinflammatory activity of IL-17 has been demonstrated in RA synovium and in animal models of RA. However, the signaling pathways that regulate IL-17 production remain unknown. In the present study, we investigated the role of the phosphatidylinositol 3 kinase (PI3K)-Akt pathway in the regulation of IL-17 production in RA. PBMC were separated from RA (n=24) patients, and stimulated with various agents (anti CD3, anti CD28, PHA, ConA, IL-15). IL-17 levels were determined by sandwich ELISA and RT-PCR. The production of IL-17 was significantly increased in cells treated with anti-CD3 antibody, PHA, IL-15 or MCP-1 (P<0.05). ConA also strongly induced IL-17 production (P<0.001), whereas TNF-alpha, IL-1beta, IL-18 or TGF-beta did not. IL-17 was detected in the PBMC of patients with osteoarthritis (OA) but their expression levels were much lower than those of RA PBMC. Anti-CD3 antibody activated the PI3K-Akt pathway and activation of the PI3K-Akt pathway resulted in a pronounced augmentation of nuclear factor kappaB ($NF-{\kappa}B$). IL-17 production by activated PBMC in RA is completely or partially blocked in the presence of $NF-{\kappa}B$ inhibitor PDTC and PI3K-Akt inhibitor, wortmannin and LY294002, respectively. Whereas the inhibition of AP-1 and extracellular signal-regulated kinase (ERK)1/2 did not affect IL-17 production. These results provide new insight into that PI3K/Akt and $NF-{\kappa}B$ dependent signal transduction pathway could be involved in the overproduction of key inflammatory cytokine, IL-17 in rheumatoid arthritis.

당뇨유발 흰쥐에서 트레드밀 운동이 망막의 혈관내피성장인자 발현에 미치는 영향 (Effect of Treadmill Exercise on Modulation of Vascular Endothelial Growth Factor Expression in the Retina of Diabetic Rats)

  • 김대영;김태운;김창주;정선영
    • 한국체육학회지인문사회과학편
    • /
    • 제51권3호
    • /
    • pp.363-372
    • /
    • 2012
  • 당뇨병의 주된 합병증 중 하나는 새로운 혈관 생성과 신경퇴화의 특징을 보이는 증식성 망막증이다. 당뇨병에서는 고혈당증, 저산소증과 부적절한 대사조절 능력이 혈관내피성장인자(vascular endothelial growth factor, VEGF)의 발현에 중요한 요인으로 제시되고 있다. 본 연구에서는 당뇨를 유발한 흰쥐에서 당뇨성 망막증에 대한 트레드밀 운동의 효과를 알아보고자 하였다. Sprague-Dawley계 흰쥐를 대조군, 운동군, 당뇨군, 당뇨운동군으로 분류하여 각 군당 8마리씩 배정하였다. 당뇨는 streptozotocin을 50 mg/kg의 용량으로 주사하여 유발하였다. 운동군은 분당 8 m의 속도로 하루 30분씩 주 5회, 총 12주 동안 트레드밀 운동을 실시하였다. 본 연구의 결과 당뇨쥐의 망막에서 phosphoinositide 3-kinase(PI3K), phospho-protein kinase B(pAkt), hypoxia inducible factor-1α(HIF-1α), 그리고 VEGF의 발현이 증가하였다. 트레드밀 운동은 PI3K/Akt 신호전달체계를 억제하여 HIF-1α의 발현과 VEGF의 발현을 감소시켰다. 본 실험 결과 트레드밀 운동은 망막의 새로운 혈관 생성을 억제함으로써 당뇨성 망막증의 진행을 억제하는데 효과적인 방안이 될 수 있을 것으로 생각된다.

The inhibitory mechanism of crude saponin fraction from Korean Red Ginseng in collagen-induced platelet aggregation

  • Jeon, Bo Ra;Kim, Su Jung;Hong, Seung Bok;Park, Hwa-Jin;Cho, Jae Youl;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • 제39권3호
    • /
    • pp.279-285
    • /
    • 2015
  • Background: Korean Red Ginseng has been used as a traditional oriental medicine to treat illness and to promote health for several thousand years in Eastern Asia. It is widely accepted that ginseng saponins, ginsenosides, are the major active ingredients responsible for Korean Red Ginseng's therapeutic activity against many kinds of illness. Although the crude saponin fraction (CSF) displayed antiplatelet activity, the molecular mechanism of its action remains to be elucidated. Methods: The platelet aggregation was induced by collagen, the ligand of integrin ${\alpha}_{II}{\beta}_I$ and glycoprotein VI. The crude saponin's effects on granule secretion [e.g., calcium ion mobilization and adenosine triphosphate (ATP) release] were determined. The activation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated protein kinase 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs), and p38 MAPK, and phosphoinositide 3-kinase (PI3K)/Akt was analyzed by immunoblotting. In addition, the activation of integrin ${\alpha}_{II}b{\beta}_{III}$ was examined by fluorocytometry. Results: CSF strongly inhibited collagen-induced platelet aggregation and ATP release in a concentration-dependent manner. It also markedly suppressed $[Ca^{2+}]_i$ mobilization in collagen-stimulated platelets. Immunoblotting assay revealed that CSF significantly suppressed ERK1/2, p38, JNK, PI3K, Akt, and mitogen-activated protein kinase kinase 1/2 phosphorylation. In addition, our fraction strongly inhibited the fibrinogen binding to integrin ${\alpha}_{IIb}{\beta}_3$. Conclusion: Our present data suggest that CSF may have a strong antiplatelet property and it can be considered as a candidate with therapeutic potential for the treatment of cardiovascular disorders involving abnormal platelet function.

천식에서 기도평활근의 증식과 합성 반응에 대한 최신지견 (Proliferative and Synthetic Responses of Airway Smooth Muscle in Asthma)

  • 심정연
    • Clinical and Experimental Pediatrics
    • /
    • 제48권6호
    • /
    • pp.580-587
    • /
    • 2005
  • New evidence is emerging that airway smooth muscle(ASM) may act as an immunomodulatory cell by providing pro-inflammatory cytokines and chemokines, polypeptide growth factors, extracellular matrix proteins, cell adhesion receptors and co-stimulatory molecules. ASM can promote the formation of the interstitial extracellular matrix, and potentially contribute to the alterations within the extracellular matrix in asthma. In addition, extracellular matrix components can alter the proliferative, survival, and cytoskeletal synthetic function of ASM cells through integrin-directed signaling. Increased ASM mass is one of the most important features of the airway wall remodeling process in asthma. Three different mechanisms may contribute to the increased ASM mass : cell proliferation, increased migration and decreased rate of apoptosis. The major signaling pathways of cell proliferation activated by ASM mitogens are those dependent on extracellular signal-regulated kinase and phosphoinositide 3'-kinase. The key signaling mechanisms of cell migration have been identified as the p38 mitogen-activated protein kinase and the p21-activated kinase 1 pathways. ASM cells contain ${\beta}2$-adrenergic receptors and glucocorticoid receptors. They may represent a key target for ${\beta}2$-adrenergic receptor agonist/corticosteroid interactions which have antiproliferative activity against a broad spectrum of mitogens.