• Title/Summary/Keyword: phosphate remove

Search Result 106, Processing Time 0.038 seconds

Surface modified mesoporous silica (SBA-15) for phosphate adsorbents in water (표면 개질된 메조기공실리카를 이용한 수중의 인 제거)

  • Lee, Seung-Yeon;Choi, Jae-Woo;Lee, Sang-Hyup;Lee, Hae-Goon;Lee, Ki-Bong;Hong, Seok-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.719-724
    • /
    • 2011
  • The excessive phosphate in water causes eutrophication which destroys water environment. In this study, mesoporous silica was synthesized and several functional groups were attached on it. Samples were tested to identify the ability to remove phosphate. The structures of synthesized materials were analyzed by X-ray diffractions (XRD), Fourier transform-infrared (FT-IR) and surface area analysis, Brunauer-Emmett-Teller (BET). To determine the maximum phosphate adsorption capacities and sorption rate, the equilibrium test and kinetic test was conducted. Among functionalized SBA-15 samples, pure SBA-15 didn't adsorb phosphate but Al-SBA-15 and Ti-SBA-15 showed good performances to remove phosphate. The maximum phosphate adsorption capacity of Al-SBA-15 was efficient compared to other adsorbents.

Phosphate Removal in the Wastewater by the different Size of Granular Converter Slag (입상 전로슬래그의 입도 차이에 따른 인공폐수의 인산염 제거에 관한 연구)

  • Lee, Sang-Ho;Lee, In-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.136-142
    • /
    • 2007
  • Recent publications have paid attention on the utilization of solid reagents for the removal of substances causing eutrophication, in particular $PO_4^{3-}$ ions. The adsorption of dissolved inorganic phosphate on slag produced by the refining process of iron ore was fundamentally studied for suppressing the liberation of phosphate from wastewater. This study has been conducted in order to find a possibility to improve the phosphate removal and to evaluate the phosphate removal variation to form hydroxyapatite, when the converter slag is used for phosphate removal. The result shows that the converter slag can be applied to remove phosphate using Freundlich isotherm. The size of converter slag, $2{\sim}0.425 mm$ was more efficient than $2{\sim}4.75mm$ to remove phosphate. In particular, 1 mg/L of phosphate can be removed up to 80% of the initial concentration for the continuous column experiment.

  • PDF

Relation between Leaching Characteristics of the positive Ions and Phosphate Removal by granular Converter Slag for the different Conditions and Concentrations of Phosphate (인산염 농도와 폐수조건 변화에 따른 입상 전로슬래그의 양이온 용출 특성과 인산염 제거의 관계에 관한 연구)

  • Lee, In-Gu;Lee, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.372-379
    • /
    • 2007
  • The converter slag can be used to remove phosphate ion into the form of solid state from the wastewater. This research aims to evaluate the change of pH, alkalinity, leaching of positive ion in the wastewater and the removal of phosphate from the initial condition of wastewater. The change of pH was abruptly increased upto pH 11 for the initial condition of pH from 7.0 to 8.5 fer 0.5 unit of pH. The alkalinity was steadily increased from 10 hours of reaction time not same as pH increase. The removal of phosphate was very effective till 10 hours of reaction then it was slow after that time. The positive ion, magnesium ion was leached from the concentration of 2.0 mg/L to 4.3mg/L at the reaction time of 27 hours and 36 hours. Therefore, converter slag can be used to remove the phosphate in the form of Struvite from the wastewater.

  • PDF

Phosphate Uptake by Acinetobacter lwoffi PO8 and Accumulation (Acinetobacter lwoffi PO8에 의한 인산흡수 및 축적)

  • Yoon, Min-Ho;Ko, Jung-Youn;Choi, Woo-Young;Shin, Kong-Sik
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.163-168
    • /
    • 2000
  • To remove phosphate accumulated in the soil and water, Acinetobacter lwoffi PO8 possessing a high ability to accumulate phosphate was isolated from a active sludge. Bacterium was cultured in the liquid medium containing $150\;{\mu}g/mL$ of phosphate at $30^{\circ}C$ in different culture conditions to examine intracellular phosphate uptake. The initial pH in the range of $7.5{\sim}8.5$ was effective on the growth and phosphate uptake of the strain. Glycerol and arabinose used as a carbon sources showed 93 and 91% the phsphate uptake, respectively. Among the nitrogen sources, ammonium salt such as $NH_4NO_3$ and $(NH_4)_2SO_4$ was effectively utilized on the phosphate uptake compared with amino compounds. The rate of phosphate uptake of $NH_4NO_3$, and $(NH_4)_2SO_4$, was 95 and 96%, respectively The growth and Phosphate uptake ability in the strain were significantly promoted when metal ions were added in the medium; $Co^{2+}$, however, was not utilized by the strain. The capacity of phosphate uptake was enhanced to $10{\sim}20%$ when arginine, methionine, or lysine was added. Using $^{32}P$ to examine the uptake Pattern of intracellular phosphate, experiment result showed that polyphosphate was largely found in the fraction of intracellular inorganic phosphate of Acinetobacter lwoffi PO8.

  • PDF

Phosphate removal by the continuous flow pilot plant with converter slag (연속흐름 모형실험장치를 이용한 전로슬래그에 의한 인산염 제거)

  • Lee, Sang Ho;Hwang, Jeong Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.453-459
    • /
    • 2014
  • The excessive concentration of phosphorus in the river and reservoir is a deteriorating factor for the eutrophication. The converter slag was used to remove the phosphate from the synthetic wastewater. Influencing factors were studied to remove soluble orthophosphate with the different particle sizes through the batch and the column experiments by continuous flow. Freundlich and Langmuir adsorption isotherm constants were obtained from batch experiments with $PS_A$ and $PS_B$. Freundlich isotherm was fitted better than Langmuir isotherm. Regression coefficient of Freundlich isotherm was 0.95 for $PS_A$ and 0.92 for $PS_B$, respectively. The adsorption kinetics from the batch experiment were revealed that bigger size of convert slag, $PS_A$ can be applied for the higher than 3.5 mg/L of phosphate concentration. The pilot plant of continuous flow was applied in order to evaluate the pH variation, breakthrough points and breakthrough adsorption capacity of phosphate. The variation of pH was decreased through the experimental hours. The breakthrough time was 1,432 and 312 hours to 10 mg/L and 50 mg/L for the influent concentration, respectively. The breakthrough adsorption capacity was 3.54 g/kg for 10 mg/L, and 1.72 g/kg for 50 mg/L as influent phosphate concentration.

Removal of both cation and anion pollutant from solution using hydrogel chitosan bead (Hydrogel 키토산비드를 이용한 수중의 양이온 중금속과 음이온의 제거 효율 평가)

  • An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.253-259
    • /
    • 2018
  • Cu(II) can cause health problem for human being and phosphate is a key pollutant induces eutrophication in rivers and ponds. To remove of Cu(II) and phosphate from solution, chitosan as adsorbent was chosen and used as a form of hydrogel bead. Due to the chemical instability of hydrogel chitosan bead (HCB), the crosslinked HCB by glutaraldehyde (GA) was prepared (HCB-G). HCB-G maintained the spherical bead type at 1% HCl without a loss of chitosan. A variety of batch experiment tests were carried out to determine the removal efficiency (%), maximum uptake (Q, mg/g), and reaction rate. In the single presence of Cu(II) or phosphate, the removal efficiency was obtained to 17 and 16%, respectively. However, the removal efficiency of Cu(II) and phosphate was increased to 50~55% at a mixed solution. The maximum uptake (Q) for Cu(II) and phosphate was enhanced from 11.3 to74.4 mg/g and from 3.34 to 36.6 mg/g, respectively. While the reaction rate of Cu(II) and phosphate was almost finished within 24 and 6 h at single solution, it was not changed for Cu(II) but was retarded for phosphate at mixed solution.

A study on the evaluation of phosphate removal efficiency using Fe-coated silica sand (철 코팅 규사의 인산이온 제거 효율 평가 연구)

  • Jo, Eunyoung;Kim, Younghee;Park, Changyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.521-527
    • /
    • 2017
  • Phosphorus is one of the limiting nutrients for the growth of phytoplankton and algae and is therefore one of leading causes of eutrophication. Most phosphorous in water is present in the form of phosphates. Different technologies have been applied for phosphate removal from wastewater, such as physical, chemical precipitation by using ferric, calcium or aluminum salts, biological, and adsorption. Adsorption is one of efficient method to remove phosphates in wastewater. To find the optimal media for phosphate removal, physical characteristics of media was analysed, and the phosphate removal efficiency of media (silica sand, slag, zeolite, activated carbon) was also investigated in this study. Silica sand showed highest relative density and wear rate, and phosphate removal efficiency. Silica sand removed about 36% of phosphate. To improve the phosphate removal efficiency of silica sand, Fe coating was conducted. Fe coated silica sand showed 3 times higher removal efficiency than non-coated one.

Removal of Phosphorus in Wastewater by Ca-Impregnated Activated Alumina

  • Kang, Seong Chul;Lee, Byoung Ho
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.197-203
    • /
    • 2012
  • Phosphorus removal during discharge of wastewater is required to achieve in a very high level because eutrophication occurs even at a very low phosphorus concentration. However, there are limitations in the traditional technologies in the removal of phosphorus at very low concentration, such as at a level lower than 0.1 mg/L. Through a series of experiments, a possible technology which can remove phosphate to a very low level in the final effluent of wastewater was suggested. At first Al, Zn, Ca, Fe, and Mg were exposed to phosphate solution by impregnating them on the surface of activated alumina to select the material which has the highest affinity to phosphate. Kinetic tests and isotherm tests on phosphate solution have been performed on four media, which are Ca-impregnated activated alumina, activated alumina, Ca-impregnated loess ball, and loess ball. Results showed that Ca-impregnated activated alumina has the highest capacity to adsorb phosphate in water. Scanning electron microscope image analysis showed that activated alumina has high void volume, which provides a large surface area for phosphate to be adsorbed. Through a continuous column test of the Ca-impregnated activated alumina it was discovered that about 4,000 bed volumes of wastewater with about 0.2 mg/L of phosphate can be treated down to lower than 0.14 mg/L of concentration.

An Experimental Study on the Tensile Strength of Dental Cements (치과용 Cement의 장력에 관한 실험적 연구)

  • Suh, Kyu-Won
    • The Journal of the Korean dental association
    • /
    • v.11 no.1
    • /
    • pp.41-44
    • /
    • 1973
  • The experiment consisted of cementing full veneer crown of extracted teeth and a standardized cylindrical metal dies (6mm diameter, 6mm height, 1mm shoulder) and then measuring the tensile strength required to remove the cemented restoratoins by the Instron testing machine in the Korea Institude of Science and Technology. The Instron machine was operated at a rate of loading of 0.2cm per minute. From the experiments, the following results obtained. 1. The tension of zinc phosphate and alumina EBA cements were highest all of the cements. 2. The tension of Fynal and the addition of eugenol to zinc Phosphate cements were similar. The addition of eugenol to zinc phosphate cement was half stength and Fynal cement was on third strength than zinc phosphate cement. 3. The tension of zinc oxide-eugenol cement was lowest all of the cements.

  • PDF

Enhancement of phosphate removal using copper impregnated activated carbon(GAC-Cu) (Cu(II)를 이용하여 표면개질된 활성탄의 인산염 제거효율 향상)

  • Shin, Jeongwoo;Kang, Seoyeon;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.455-463
    • /
    • 2021
  • The adsorption process using GAC is one of the most secured methods to remove of phosphate from solution. This study was conducted by impregnating Cu(II) to GAC(GAC-Cu) to enhance phosphate adsorption for GAC. In the preparation of GAC-Cu, increasing the concentration of Cu(II) increased the phosphate uptake, confirming the effect of Cu(II) on phosphate uptake. A pH experiment was conducted at pH 4-8 to investigate the effect of the solution pH. Decrease of phosphate removal efficiency was found with increase of pH for both adsorbents, but the reduction rate of GAC-Cu slowed, indicating electrostatic interaction and coordinating bonding were simultaneously involved in phosphate removal. The adsorption was analyzed by Langmuir and Freundlich isotherm to determine the maximum phosphate uptake(qm) and adsorption mechanism. According to correlation of determination(R2), Freundlich isotherm model showed a better fit than Langmuir isotherm model. Based on the negative values of qm, Langmuir adsorption constant(b), and the value of 1/n, phosphate adsorption was shown to be unfavorable and favorable for GAC and GAC-Cu, respectively. The attempt of the linearization of each isotherm obtained very poor R2. Batch kinetic tests verified that ~30% and ~90 phosphate adsorptions were completed within 1h and 24 h, respectively. Pseudo second order(PSO) model showed more suitable than pseudo first order(PFO) because of higher R2. Regardless of type of kinetic model, GAC-Cu obtained higher constant of reaction(K) than GAC.