• Title/Summary/Keyword: phenol-oxidizing microorgansims

Search Result 1, Processing Time 0.01 seconds

Gaseous TCE and PCE Degradation with or without a Nonionic Surfactant (비이온 계면활성제의 주입과 비주입 할 경우 기체 상태의 TEC와 PEC 분해)

  • Kim, Jong-O
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.31-40
    • /
    • 1997
  • This study was conducted to investigate the biodegradation of gaseous trichloroethylene (TCE) and tetrachloroethylene (PCE) in an activated carbon biofilter inoculated with phenol-oxidizing microorganisms and to study the effect of surfactant concentration below its critical micelle concentration (CMC) on the re-moval efficiency of TCE or PCE. The investigation was conducted using two specially built stainless steel biofilters, one for TCE and the other for PCE, at residence times of 1.5~7 min. The removal efficiency of gaseous TCE was 100% at a residence time of 7 min and its average inlet concentration of 85 ppm. For gaseous PCE, 100% removal efficiency was obtained at residence times of 4~7 min and its average concentrations of 47~84 ppm. It was found that adsorption by GAC was a minor mechanism for TCE and PCE removal in the activated carbon biofilters. Transformation yields of gaseous TCE and PCE were about 8~48 g of TCE/g of phenol and 6~25g of PCE/g of phenol, according to residence times. This values showed one or two orders of magnitude less than aqueous TCE degradation. The TCE and PCE activated carbon biofilter performances were observed to be a little enhanced but not significantly, when the surfactant was introduced at concentrations of 5~50 mg/L.

  • PDF