• Title/Summary/Keyword: phenol-formaldehyde resin adhesive

Search Result 25, Processing Time 0.016 seconds

Utilization of Kraft Black Liquor as Resin Binders (접착제(接着劑)로서 크라프트 리그닌 폐액(廢液)의 이용(利用))

  • Park, Kwang-Man;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 1987
  • A kraft black liquor obtained from pulping of pine (Pinus densiflora Sieb et Zucc) was used for producing three kinds of adhesive such as black liquor-phenol formaldehyde resin, methyloeated kraft lignin-phenol formaldehyde resin, and lignin cake-phenol resin. In case of producing black liquor-phenol formaldehyde resin, about 60 percent of the phenolic resin could be replaced by black liquor. Also the optimal press condition appeared to be $160^{\circ}C$ for 7 min. (l5.77Kg/$cm^2$ in dry test, 8.54Kg/$cm^2$ in 4 hr. boil test). Phenol could be substituted up to 80-90 percent by methylolated kraft lignin. The suitable conditions of factors affecting bond quality were pH to 2.6, methanol as solvent and 0.2ml formaldehyde per 1g of the adhesives, respectively. The optimal press condition was $150^{\circ}C$ for 4 min. (188.54Kg/$cm^2$ in dry test, 10.08Kg/$cm^2$ in 4 hr. boil test). In preparing lignin cake-phenol resin, a suitable mixing ratio of phenol to powered kraft lignin was one to one by weight. The optimal press condition was $150^{\circ}C$ for 4 min.(18.46Kg/$cm^2$ in dry test, 12.31Kg/$cm^2$ in 4 hr. hoil test).

  • PDF

Effect of Filler Types on Phenol-Formaldehyde Resin Adhesive for Plywood (충전제의 종류가 합판용 페놀수지 접착제에 미치는 효과)

  • Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.48-52
    • /
    • 1998
  • Residues such as walnut, pinenut and peanut shells were used as a filler in adhesive for bonding radiata pine plywood. The nutshell residues were prepared by simply drying to 8% moisture content and grinding the dry material using a laboratory Wiley mill with a $75{\mu}m$ (200 mesh) screen. The nutshells residues were compared to a commercial filler commonly used in adhesives by the structural plywood and laminated veneer lumber industry in the United States. The adhesive mixes were made by following the recommended procedure of Georgia-Pacific Resins, Inc., using phenol-formaldehyde resin. For each filler type, three-ply plywoods, 6 mm nominal thickness and 30 by 30 cm in size, were fabricated at two press times (4 and 5 min) and around 30 minute assembly time. Evaluations of the nutshell residues were carried out by tension shear tests after cyclic boil tests on plywood. The results of the performance test included tension shear strength and wood failure. All plywoods made with the nutshell fillers were comparable to those made with the control filler. These results indicate that nutshell residues would be suitable as filler for plywood adhesives.

  • PDF

Adding Effect of TCA-Precipitated Blood Powder to the Phenol Formaldehyde Resin for Plywood (합판용 페놀수지 접착제에 대한 TCA침전 혈액분말의 첨가효과)

  • Lee, Hwa-Hyoung;Lee, Jong-Shin;Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.15-19
    • /
    • 1996
  • To utilize the waste materials and develope wood adhesive from isolated bloods of slaughtered cow and pig and also to prevent water pollution, simple and rapid method of isolation and purification of plasma proteins from pig bloods with trichloroacetic acid(TCA) treatment was developed. Adding of TCA-precipitated blood powder to the phenol formaldehyde resin(PF) improved dry and wet strength of plywood and resulted in fast hot pressing times.

  • PDF

Use of Polyethylene as an Additive in Plywood Adhesive (합판 접착제의 첨가제로서 폴리에틸렌의 이용)

  • Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.14-18
    • /
    • 1998
  • A low density polyethylene(LDPE) was examined as an additive in phenol-formaldehyde(PF) resin adhesive for bonding radiata pine plywood. The LDPE was supplied by the commercial manufacturer. The LDPE was compared to a commercial filler commonly used in structural plywood adhesives in the United States. The adhesive mixes were made by following the recommended procedure of Georgia-Pacific Resins Inc.. using plywood-type PF resin. A total of 48 three-ply plywoods. 6.3 mm nominal thickness and 30 by 30 em in size, were made at two press times (4 and 5 min). two press temperatures (150 and $160^{\circ}C$) and 30 minute assembly times for four adhesive mixing types. Evaluations of the LDPE addition were carried out by performance tension shear tests after two cycle boil aging tests on plywood per the U.S. Product Standard PS I-83. After accelerated-aging tests. plywoods were exhibited no delamination. The test results included tension shear strength and estimated wood failure values. The plywood test results support the use of polyethylene as an additive in plywood adhesives.

  • PDF

Flexural Modulus of Larch Boards Laminated by Adhesives with Reinforcing Material

  • Injeong LEE;Weontae OH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.14-22
    • /
    • 2023
  • Economical use of larix (larch) boards (grade 3) in industries is lower than that of imported hardwood; thus, studies have been conducted toward performance improvement of larix boards. Herein, flexural modulus of larix board samples laminated with wood adhesives polyurethane resins, poly (vinyl acetate) resins, phenol-resorcinol-formaldehyde resins, melamine-formaldehyde resins, and urea-formaldehyde resins was compared with that of the samples bonded with adhesives reinforced with mesh-type basalt fibers. Moreover, the flexural moduli of the laminated samples bonded by mesh-type basalt fibers were compared with those of reinforced samples. The results showed that boards laminated with polyurethane and urea-formaldehyde resin adhesives had higher flexural modulus than those without the lamination. In particular, the increase in the flexural modulus was relatively significant for the 2- and 3-ply board structures laminated with polyurethane adhesives compared to those with reinforcement. The 3-ply board structure without reinforcement had the highest flexural modulus when the urea-formaldehyde resin adhesive was used.

Adhesive Properties of Phenol Resin Adhesive Mixed with Wood Tar (목타르 혼합 페놀수지접착제의 접착성능)

  • Park Sang-Bum;Kim Su-Won;Park Byung-Dae;Han Tae-Hyung;Kang Eun-Chang;Park Jong-Young;Mun Sung-Phil
    • Journal of Korea Foresty Energy
    • /
    • v.24 no.1
    • /
    • pp.28-32
    • /
    • 2005
  • This study was performed to find a new use of wood tar from the manufacturing process of wood charcoal. Plywoods made of phenol adhesives mixed with wood tar were manufactured, and physical, mechanical properties and formaldehyde emission were investigated. Plywoods made of phenol adhesives mixed with wood tar were almost same as an original phenol adhesive in physical and mechanical properties and tensile-shear adhesive strength of the plywood was higher than the original one in both non-waterproof and waterproof tests. Formaldehyde emission was lower as the amount of wood tar increased in phenol adhesive.

  • PDF

Bonding Performance of Adhesives with Lamina in Structural Glulam Manufactured by High Frequency Heating System

  • Kim, Keon-Ho;Kim, Se-Jong;Yang, Sang-Yun;Yeo, Hwanmyeong;Eom, Chang-Deuk;Shim, Kugbo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.682-690
    • /
    • 2015
  • The bonding performance of two types of wood adhesives, namely phenol-resorcinol-formaldehyde (PRF) resin and melamine-urea-formaldehyde (MUF) resin for glued laminated timber manufactured by high frequency (HF) heating was evaluated. The HF heating system consists of HF oscillator with dielectric heating system for curing adhesives, and hydraulic press system for clamping glued laminated timber. The designed frequency and output power of the HF system was as 5 MHz and 60 kW, respectively. To verify dielectric heating mechanism under HF oscillation, the heat loss factors of laminae and adhesives were measured. The results show that it is possible to selectively heat adhesives for their curing due to the remarkably higher loss factor of the adhesives than those of wood laminae. The temperature of adhesive in the bonding line reached up to the set temperature within a few seconds by high frequency oscillating, which advanced the curing of adhesive afterwards. The bonding performance, such as shear strength of bonding line, water soaking delamination, and boiling water soaking delamination of PRF resin met the requirement of Korean Standard (KS), however the MUF resin did not meet the KS requirement of boiling water soaking delamination. These results indicate that the HF heating system is successful to manufacture glued laminated timbers with PRF resins to meet the bonding requirements.

Bonding Quality of Adhesives Formulated with Okara Hydrolyzates and Phenol-formaldehyde Resins for Bonding Fancy Veneer onto High-density Fiberboard (두부비지 가수분해물과 페놀수지로 조제한 마루판 화장용 접착제의 접착성능)

  • Yang, In;Ahn, Sye-Hee;Choi, In-Gyu;Choi, Won-Sil;Kim, Sam-Sung;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.388-396
    • /
    • 2009
  • In our study, the potential of okara as an ingredient of new bio-based adhesives was investigated for the production of fancy-veneered flooring boards. Okara was hydrolyzed by 1% sulfuric acid solution (AC) and 1% sodium hydroxide solution (AK). Phenol formaldehyde (PF) prepolymers were prepared as a cross-linker of okara hydrolyzates. Then, okara-based adhesive resins were formulated with 35% AC, 35% AK and 30% PF prepolymer on solid content basis. The adhesive resins were applied on high-density fiberboards (HDF) with the spread rate of $300g/m^2$. After that, oak fancy veneers are covered on the HDF, and then pressed with the pressure of $7kg/m^2$ at $120^{\circ}C$. The experimental variables were three mole ratios of formaldehyde to phenol (1.8, 2.1, 2.4), three assembly time (0, 10, 20 min), and two press time (90 sec, 120 sec), respectively. The fancy-veneered high-density fiberboards were tested by dry tensile strength, glueline failure by wetting and formaldehyde emission. Tensile strength of the boards exceeded the requirement of KS standard. The formaldehyde emissions were approached at the E0 level specified in KS standard. Based on these results, okara can be used as an ingredient of environmentally friendly adhesive resin systems for the production of flooring boards.

Application of Lignin (II). Preparation of Lignin Resin and It's Adhesive Strength (리그닌의 應用 (第2報). 리그닌樹脂의 合成 및 接着力 調査)

  • Gab Yong Lee;Byung Kak Park;Byung Guen Lee
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.240-243
    • /
    • 1976
  • A lignin resin, synthesized from the reaction of lignin, phenol and formaldehyde using NaOH as catalyst, showed a strong adhesive property. From a series adhesive strength test it has been shown that the synthetic resin can be used as a good adhesive material for wood.

  • PDF

Properties of Water Resistant Plywood made with Modified Serum Protein Adhesive (혈장변성접착제를 사용한 내수합판의 특성)

  • Kang, Seog-Goo;Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.21-27
    • /
    • 2011
  • This study was carried out to examine properties of water resistant plywood by using serum protein adhesive which is natural, environment-friendly and human-friendly. For the preparation of the serum protein adhesive, pig blood from slaughterhouse was centrifuged and serum was separated from corpuscles and concentrated to 30% by dry weight basis. This concentrated serum protein was modified with PF resin (50% NVC) with the ratio of 9 : 2.5. Plywood made by this modified serum protein gave 1.21 N/$mm^2$ of dry bonding strength, 0.80 N/$mm^2$ of wet boil bonding strength, 0% of cyclic delamination test value, and 0.025 ppm of HCHO emission, which met the excellent super $E_0$ grade and water resistant plywood.