• Title/Summary/Keyword: phenol formaldehyde

Search Result 130, Processing Time 0.023 seconds

Investigation of the Effect of Organoclay Additives on Mechanical Properties of PF resin and MPB-OSL using Creep Behavior Analysis and IB Test

  • Kim, Yong-Sik;Kadla, John F.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.381-389
    • /
    • 2011
  • The effect of organoclays on the mechanical properties of cured phenol formaldehyde resin and oriented strand lumber made from Mountain Pine Beetle killed pine strands was analyzed. Three organoclays were used: a natural montmorillonite, hydrophobic organically modified 10 A, and hydrophilic organically modified 30 B. The oriented strand lumber samples were less creep deformation as well as improved internal bonding strength by adding organoclays in the order of 10 A 2% > MMT 2% > 30 B 2% > control. Furthermore, time-temperature superposition (TTS) analysis was proved to be able to predict the long-term creep behavior of MPB-OSL samples.

Properties of Water Resistant Plywood made with Modified Serum Protein Adhesive (혈장변성접착제를 사용한 내수합판의 특성)

  • Kang, Seog-Goo;Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.21-27
    • /
    • 2011
  • This study was carried out to examine properties of water resistant plywood by using serum protein adhesive which is natural, environment-friendly and human-friendly. For the preparation of the serum protein adhesive, pig blood from slaughterhouse was centrifuged and serum was separated from corpuscles and concentrated to 30% by dry weight basis. This concentrated serum protein was modified with PF resin (50% NVC) with the ratio of 9 : 2.5. Plywood made by this modified serum protein gave 1.21 N/$mm^2$ of dry bonding strength, 0.80 N/$mm^2$ of wet boil bonding strength, 0% of cyclic delamination test value, and 0.025 ppm of HCHO emission, which met the excellent super $E_0$ grade and water resistant plywood.

Examination of Newsprint Residue as a Plywood Adhesive Filler (합판의 충전제로서 신문용지 잔사의 조사)

  • Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.42-45
    • /
    • 1996
  • A residue from the newsprint waste was investigated as a filler in adhesive for bonding southern pine plywood. The residue was prepared by drying the wet residue to 8% moisture content and grinding the dry material using a laboratory Wiley mitt with a 75-${\mu}m$(200-mesh) screen. The residue was compared to a commercial filler commonly used in structural plywood adhesives. A total of 48 three-ply panels. 12.7mm nominal thickness and 0.3 by 0.3 m in size, were fabricated at two press times(4 and 5 min) and three assembly times(20, 40 and 60 min). Evaluations of the residue were carried out by performance tension shear tests after two 4-hour boil accelerated aging tests on plywood. The test results included tension shear strength and estimated wood failure values. All plywood made with the residue filler were comparable to the control-bonded plywood. These results indicate that residue from the newsprint waste streams would be suitable as filler for plywood adhesives.

  • PDF

Volatile Flavor Compounds in Commerical Liquid Smokes

  • Park, Sung-Young;Kim, Hun;Cho, Woo-Jin;Lee, Young-Mi;Lee, Jung-Suck;Cha, Yong-Jun
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.141-142
    • /
    • 2001
  • Liquid smoke is made by concentration of smoke generated from charcoal of broad-leaved trees, or by refinement of smoke originated from incomplete combustion of wood condensate (Park et al., 1994). Generally, it is well known that phenol and its derivatives have antioxidative effect, while acids and formaldehyde have antimicrobial effect (Park et al., 1994). Meanwhile, some studies (Alonge, 1988; Dungel, 1961) reported that the high incidence of stomach cancer has been associated with the consumption of smoked fishes, and these were investigated to direct intake of fishes treated with smoke, containing polycyclic aromatic hydrocarbons(PAHs)(Moret et al., 1999). (omitted)

  • PDF

Development of Phenolic SMC for The Rail (철도차량 및 지하철 불연 내장재 페놀 SMC 개발)

  • Kim Young-keun;Shin Dong-hyok;Kim Young-min;Park Joung-wuk;Min Jae-Jun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.55-58
    • /
    • 2004
  • Phenolin resin, prepared form phenol and formaldehyde, is one of the oldest thermosetting resins available. Phenolic resins are cured via condensation polymerization with evolution of water, which in molding process is a big problem. The use of phenolic resins in glass fiber composites is growing, primarily due to their low flame spread, low smoke generation and low smoke toxicity properties. SMC of phenolics has been rearched since the 1986. The technology challenge was to match resin viscosity, handling and cure with those for the polyester SMC to avoid any special processing for fabricators and end users. Phenolic SMC was chosen because of the ease of molding to the required shape with light- weight, thin wall structure and with excellent fire protection.

  • PDF

Studies on Nanostructured Amorphous Carbon by X-ray Diffraction and Small Angle X-ray Scattering

  • Dasgupta, K.;Krishna, P.S.R.;Chitra, R.;Sathiyamoorth, D.
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.10-13
    • /
    • 2003
  • The structural studies of amorphous isotropic carbon prepared from pyrolysis of phenol formaldehyde resin have been carried out using X-ray diffraction. X-ray diffraction from as prepared sample at $1000^{\circ}C$ and a sample treated at $1900^{\circ}C$ revealed that both are amorphous even though there are small differences in short range order. It is found that both are graphite like carbon (GLC) with predominantly $sp^2$ hybridization. Small angle X-ray scattering results show that as prepared sample mainly consists of thin two dimensional platelets of graphitic carbon whereas they grow in thickness to become three dimensional materials of nano dimensions.

  • PDF

Synthesis and Photocharacteristics of Trihydric Phenol Photoresist (Trihydric Phenol계 Photoresist의 합성과 그 감광 특성)

  • Hong, Eui-Suk;Ko, Jae-Yong;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.47-54
    • /
    • 1996
  • Cinnamoyl ester(PGEFC) of poly(phloroglucinol-formaldehyde) glycidyl ether which has photosensitive functional group was prepared to apply to photoresist. Photosensitivity of PGEFC was estimated by the solubility difference in organic solvent before and after exposure to light. The yield of residual film was calculated by immersing the sample-coated quartz plates in the solvent which was used in coating. The yield of the residual film which was closely related to the sensitivity of the film, was affected by the degree of polymerization of the backbone resin, sensitizers and their concentration. The sensitivity was depended upon the degree of polymerization. Most of effective sensitizer for PGEFC among the sensitizers was 2, 6-dichloro-4-nitroaniline.

Studies on the Extending of Plywood Adhesives used Foliage Powder (낙엽분말(落葉粉末)을 이용(利用)한 합판용(合板用) 접착제(接着劑)의 증량(增量)에 관(關)한 연구(硏究))

  • Kim, Jong-Man;Bark, Jong-Yeol;Lee, Phil-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.42 no.1
    • /
    • pp.83-100
    • /
    • 1979
  • It was planned and performed to study the possibility on the use of inexpensive and easily acquirable foliage powder, which processed by pulverizing after dried, instead of imported expensive wheat flour for the extending of plywood adhesives. Pine leaves of softwood trees, Poplar, Oak and Sycamore leaves of broad leaved species were selected and harvested to pulverize into the minute foliage powder. The harvested foliages from each selected species were pulverized into 40 mesh particles after dried at $100{\sim}105^{\circ}C$ condition during 24 hours in drying oven. To compare the extending effect of plywood adhesives with these foliage powders 100 mesh wheat flour using at current plywood industry was also prepared. Foliage powder and wheat flour were extended into 10, 20, 30, 50 and 100% to the urea and phenol formaldehyde resin. After plywoods were processed by the above extending method shear strength of extended plywoods were analyzed and discussed. The results obtained at this study are as follows: 1) Among 10% extensions of urea formaldehyde resin plywood, dry shear strength of plywood extended by wheat flours was the highest and that of non-extended plywood the next. Plywood extended with foliage powder showed the lowest dry shear strength. The order of dry shear strength of plywoods extended by foliage powder was that of Oak foliage powder extension, the best, that of Sycamore, that of Pine, and that of Poplar. 2) Among 20% extensions of urea formaldehyde resin plywood, plywood extended by wheat flour showed the highest dry shear strength, and the next was plywood by Poplar foliage powder. All these two showed higher dry shear strength than non-extension plywoods. Except Poplar, dry shear strength of foliage powder extension plywoods was bad, but the order of dry shear strength of plywoods extended by foliage powder was Pine, Poplar and Oak. 3) In the case of 30% extensions of urea formaldehyde resin plywood, dry shear strength of wheat flour extension was the highest and non-extension the next. Dry shear strength of foliage powder extension plywoods was poor with a rapid falling-off in strength. 4) Among 50% and 100% extensions of urea formaldehyde resin plywood, only wheat flour showed excellent dry shear strength. In the case of foliage powder extension, low dry shear strength showed at the 50% extension of Pine and Poplar, and plywoods of 50% extension of Oak foliage powder delaminated without measured strength. All plywoods of 100% foliage powder extension delaminated, and then shear strength were not measured. 5) Among wet shear strength of 10% extensions of urea formaldehyde resin plywood, wheat flour extension was the highest as in the case of dry shear strength, and non-extension plywood the next. Except Poplar foliage extension, all foliage powder extension plywoods showed low shear strength. 6) Wet shear strength of plywoods of 20% extension lowered in order of non-extension plywood, plywood of wheat flour extension and plywood of foliage powder extension, but other plywoods of foliage powder extension except plywoods of Poplar and Oak foliage powder extension delaminated. 7) Wet shear strength of 30% or more extension of urea formadehyde resin plywood were weakly measured only at 30% and 50% extension of wheat flour, and wet shear strength of plywoods extended by foliage powder were not measured because of delaminating. 8) Dry shear strength of phenol formaldehyde plywoods extended by 10% wheat flour was the best, and shear strength of plywoods extended by foliage powder were low, but the order was Oak, Poplar, and Pine. Plywood of Sycamore foliage powder extension delaminated. 9) In the case of 20% extensions of phenol formaldehyde resin, dry shear strength of plywood extended by wheat flour was the best, but plywood of Pine foliage powder extension the next, and the next order was Oak and Poplar foliage powder. Plywood of Sycamore foliage powder extension delaminated. 10) Among dry shear strength of 30% extensions of phenol formaldehyde plywood, that of Pine foliage powder extension was on the rise and more excellent than plywood of wheat flour extension, but Poplar and Oak showed the tendency of decreasing than the case of 20% extension. Plywood of Sycamore foliage powder extension delaminated. 11) While dry shear strength of 50% and 100% extension plywoods were excellent in the case of Pine foliage powder and wheat flour extension, that of hardwood such as Poplar, Oak, and Sycamore foliage powder extension were not measured because of delaminating. 12) As a filler the foliage powder extension of urea formaldehyde resin is possible up to 20% with Poplar foliage powder. And also as an extender for phenol formaldehyde resin, Pine foliage powder can be added up to the same amount as that in the case of wheat flour.

  • PDF

Development of Adhesive Resins Formulated with Rapeseed Flour Hydrolyzates for Medium Density Fiberboard (MDF) (유채박 가수분해물을 이용한 중밀도섬유판(MDF) 제조용 접착제의 개발)

  • Yang, In;Han, Gyu-Seong;Choi, In-Gyu;Kim, Yong-Hyun;Ahn, Sye-Hee;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.177-185
    • /
    • 2012
  • The interest to develop adhesives from renewable resources is growing to substitute petroleum-based adhesive resins in the manufacture of wood based panels. In our study, rapeseed flour (RSF), which is the by-product of bio-diesel produced from rapeseed, were hydrolyzed with acid and alkali. As a crosslinking agents of the RSF hydrolyzates, phenol-formaldehyde prepolymers (PF) were prepared. The RSF hydrolyzates and PF were mixed to complete the formulation of RSF-based adhesive resins, and the resins were applied to make the medium density fiberboard (MDF). The physical and mechanical properties of the MDF were measured to examine whether RSF can be used as raw materials of adhesive resins for the manufacture of MDF or not. The average moisture content and density of the MDF made with RSF-based adhesive resins satisfied the minimum requirement of KS standard, but the thickness swelling was not. The bending strengths of the MDF made with RSF-based adhesive resins were lower than that of the MDF made with commercial UF resins, but the internal bonding strengths of tested MDF in some make-up conditions of RSF-based adhesive resins were higher than that of MDF made with commercial UF resins. These results showed the potential of RSF as a raw material of adhesives for the production of MDF. Future works on the optimal manufacturing process conditions of MDF made with RSF-based adhesive resins are required to improve the performance of MDF made with RSF-based resins.

Synthesis and Properties of Poly(ester-imide) Resin for High Temperature Resistant Electrical Insulation (고내열성 전기 절연용 Poly(ester-imide) 수지의 합성 및 물성)

  • Huh, Wansoo;Lee, SangWon;Kim, Jeongyeol;Park, Leesoon;Kim, Soonhak;Haw, JungRim
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.767-771
    • /
    • 1999
  • Poly(ester-imide)(PEI) for the electrical insulation coating was synthesized and evaluated with one-step method as well as two-step method. For the synthesis of poly(ester-imide), imide repeat unit of N,N'-(4,4'-diphenylmethane) bistrimellitimide(DID) was initially made from trimellitic anhydride(TMA) and methylene dianiline(MDA), followed by the second stage reaction of esterification. One-step reaction was performed by reaction of TMA, MDA, dimethyl terephthalate(DMT), ethylene glycol(EG), and 1,3,5-tris-(2-hydroxy ethyl) isocyanurate(THEIC) in m-cresol solvent at a time. The synthesized poly(ester-imide) was cured with xylene, P-5030K(phenol-formaldehyde resin), TK-8(TDI type blocked polyisocyanate) and tetrapropyltitanate(TPT). It was found that the content of hydroxyl group, amount of DMT, and imide repeat unit played important role for the properties of electrical insulation coating film.

  • PDF