• Title/Summary/Keyword: phbCAB genes

Search Result 3, Processing Time 0.015 seconds

Investigation of Regulatory Mechanism of Flux of Acetyl-CoA in Alcaligenes eutrophus Using PHB-negative Mutant and Transformants Harboring Cloned phbCAB Genes

  • Jung, Young-Mi;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.215-222
    • /
    • 1997
  • The regulatory mechanism of the flux of acetyl-CoA in Alcaligenes eutrophus in unbalanced growth conditions was investigated using a PHB-negative mutant and transformants reintroduced PHB-biosynthesis enzymes through the transformation of cloned phbCAB genes. The PHB-negative mutant was defected absolutly in PHB synthase but partially in ${\beta}$-ketothiolase and acetoacetyl-CoA reductase, and excreted substantial amount of pyruvate to culture broth at late growth phase. The excretion was due to the inhibitory effect of acetyl-CoA on the activity of pyruvate dehydrogenase. The cloned phbC and phbCAB genes were transformed to the PHB-negative mutant strain to reintroduce PHB biosythesis enzymes. Pyruvate excretion could be decreased substantially but not completely by transformation of PHB synthase alone, while pyruvate excretion was ceased by transformation of all three PHB biosynthesis enzymes. To identify the most critical PHB biosynthesis enzyme influencing on the flux of acetyl-CoA, the effect of the variation of PHB biosynthesis enzymes on pyruvate dehydrogenase was investigated. ${\beta}$-Ketothiolase influenced the activity of pyruvate dehydrogenase more sensitively than PHB synthase. ${\beta}$-Ketothiolase, the first step enzyme of PHB biosynthesis that condense acetyl-CoA to acetoacetyl-CoA, seems to be the major enzyme determining the flux of acetyl-CoA to PHB biosynthesis or TCA cycle, and the rate of PHB biosynthesis in A. eutrophus.

  • PDF

Construction of the Recombinant phbCAB Operon of Alcaligenes eutvtrphus for Accumulation of Poly-$\beta$-hydroxybu tyric Acid in Escherichia coli (Alcaligenes eutrophus phbCAB Operon의 재조합과 Poly-$\beta$-hydroxybutyric Aicd의 대장균내 축적)

  • 김경태;박진서;이용현;허태린;박해철
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.3
    • /
    • pp.221-228
    • /
    • 1993
  • In order to achieve poly-beta-hydroxybutyric acid (PHB) production using recombinant DNA in various host bacterial cells, the isolation of genes for PHB biosynthesis was attempted. As a result, a 5.2kb DNA fragment containing phbCAB operon of Alcaligenes eutrophus was isolated by colony hybridization using synthetic oligodeoxyribonucleotides as probes. The constructed recmbinant plasmid pSK(+)-phbCAB operon was transferred to Escherichia coli, and the obtained transformant accumulated considerable amount of PHB.

  • PDF

Production and characterization of ultra-high-molecular weight poly(3-hydroxybutyrate) by recombinant Escherichia coli

  • Park, Jong-Pil;Park, Si-Jae;Lee, Sang-Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.731-734
    • /
    • 2001
  • An efficient fermentation strategy for the high level production of ultra-high-molecular weight poly(3-hdyroxybutyrate) (PHB) was developed. Although the cell and PHA concentrations obtained by flask cultures at different initial pH (6.0 or 6.9) were almost same level, the molecular mass of PHB produced were quite different along with the initial pH. When a recombinant Escherichia coli XL1-Blue harboring pJC2 containing the Alcaligenes latus PHB biosynthesis genes was cultivated in flask culture (pH 6.0), the PHB having a very high molecular weight of 22 MDa could be produced while only below 1 MDa at initial pH 6.9. The ultra-high-molecular weight PHB could be synthesized to high concentration of 89.8 g/L resulting in the PHB productivity of 2.07 g/L-h by simple fed-batch culture. In this study, we report that PHB having various molecular mass can be produced by employing metabolically engineered E. coli strains harboring the plasmids of different copy numbers containing the A. latus phbCAB genes.

  • PDF