• Title/Summary/Keyword: phast dispersion modeling

Search Result 1, Processing Time 0.013 seconds

A Study on Validation for Mapping of Gas Detectors at a BTX Plant (BTX 공정에서 Gas Detector Mapping 적정성 검토에 관한 연구)

  • Seo, Ji Hye;Han, Man Hyoeng;Kim, Il Kwon;Chon, Young Woo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.168-178
    • /
    • 2017
  • In order to prevent major and chemical accidents, some of the plants which would like to install and operate hazard chemicals handling facilities must submit Off-site Consequence Analysis due to recent arisen leak accidents since 2015. A lot of chemical industrials choose gas detectors as mitigation equipment to early detect gas vapor. The way of placement of gas detectors has two methods; Code-based Design(CBD) and Performance-based Design. The CBD has principles for gas detectors to be installed with consideration for the place that is expected to accumulate gas, and the leak locations according to legal standards and technical guidelines, and has a possibility to be unable to detect by these rules to locate gas detectors by vapor density information. The PBD has two methods; a Geographic Method and Scenario based Method. The Scenario-based Method has been suggested to make up for the Geographic Coverage Method. This Scenario-based Method draw the best optimum placement of gas detectors by considering leak locations, leak speed information, leak directions and etc. However, the domestic placement guidelines just refers to the CBD. Therefore, this study is to compare existing placement location of gas detectors by the domestic CBD with placement locations, coverages and the number of gas detectors in accordance with the Scenario-based Method. Also this study has measures for early detecting interest of Vapor Cloud and suitable placement of gas detectors to prevent chemical accidents. The Phast software was selected to simulate vapor cloud dispersion to predict the consequence. There are two cases; an accident hole size of leak(8 mm) from API which is the highst accident hole size less than 24.5 mm, and a normal leak hole size from KOSHA Guide (1.8 mm). Detect3D was also selected to locate gas detectors efficiently and compare CBD results and PBD results. Currently, domestic methods of gas detectors do not consider any risk, but just depend on domestic code methods which lead to placement of gas detectors not to make personnels recognize tolerable or intolerable risks. The results of the Scenario-based Method, however, analyze the leak estimated range by simulating leak dispersion, and then it is able to tell tolerable risks. Thus it is considered that individuals will be able to place gas detectors reasonably by making objectives and roles flexibly according to situations in a specific plant.