• Title/Summary/Keyword: phasic contraction

Search Result 42, Processing Time 0.019 seconds

Effects of $\alpha$-Adrenoceptor Antagonists on Phenylephrine-induced Contraction in the Endothelium-denuded Rat Aorta (내피세포를 제거한 흰쥐 대동맥에서 Phenylephrine이 일으킨 수축반응에 대한 $\alpha$-수용체 길항제의 영향)

  • 홍승철;강맹희;박상일;박미선;최수경;정준기;서석수
    • YAKHAK HOEJI
    • /
    • v.35 no.5
    • /
    • pp.416-426
    • /
    • 1991
  • The effects of an irreversible or a reversible $\alpha_1$-adrenoceptor antagonist (dibenamine or prazosin) on $\alpha_1$-adrenoceptor-mediated vasoconstrictions were studied in the endothelium-denuded rat aorta. In these experiments, the mobilization of intracelluier calcium and translocation of extracellular calcium were also studied. To exclude the modulation of endothelium releasing EDRF and EDCF, the endothelium was removed in all rat aortas. Contraction induced by phenylephrine (a full $\alpha_1$-adrenoceptor agonist) was separated into a fast phasic component of the response due to the release of intracellular calcium and a slow tonic one due to the influx of extracellular calcium. Pretreatments with increasing doses of reversible $\alpha_1$-adrenoceptor antagonist prazosin, as well as irreversible $\alpha_1$-adrenoceptor antagonist dibenamine, inhibited the phasic component of phenylephrine-induced contraction more effectively than the tonic one. Pretreatment of dibenamine (0.2 $\mu{M}$) or prazosin (10 nM) to the rat aorta abolished phasic response but remained tonic one about 41% and 51%, respectively. These results suggest that as the efficiency of phenylephrine was progressively reduced by pretreatments with increasing doses of an irreversible or a reversible $\alpha_1$-adrenoceptor antagonist (dibenamine or prazosin), the contraction induced by phenylephrine became progressively more dependent on the influx of extracellular calcium.

  • PDF

Regulation of $Ba^{2+}$-Induced Contraction of Murine Ureteral Smooth Muscle

  • Kim, Young-Chul;Lee, Moo-Yeol;Kim, Wun-Jae;Myung, Soon-Chul;Choi, Woong;Kim, Chan-Hyung;Xu, Wen-Xie;Kim, Seung-Ryul;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.207-213
    • /
    • 2007
  • This study was designed to characterize ureteral smooth muscle motility and also to study the effect of forskolin(FSK) and isoproterenol(ISO) on smooth muscle contractility in murine ureter. High $K^+$(50 mM) produced tonic contraction by $0.17{\pm}0.06mN$(n=19). Neuropeptide and neurotransmitters such as serotonin($5{\mu}M$), histamine($20{\mu}M$), and carbarchol(CCh, $10{\sim}50{\mu}M$) did not produce significant contraction. However, CCh($50{\mu}M$) produced slow phasic contraction in the presence of 25 mM $K^+$. Cyclopiazonic acid(CPA, $10{\mu}M$), SR $Ca^{2+}$-ATPase blocker, produced tonic contraction(0.07 mN). Meanwhile, inhibition of mitochondria by protonophore carbnylcyanide m-chlorophenylhydrazone(CCCP) also produced weak tonic contraction(0.01 mN). The possible involvement of $K^+$ channels was also pursued. Tetraethyl ammonium chloride(TEA, 10 mM), glibenclamide($10{\mu}M$) and quinidine($20{\mu}M$) which are known to block $Ca^{2+}$-activated $K^+$ channels($K_{Ca}$ channel), ATP-sensitive $K^+$ channels($K_{ATP}$) and nonselective $K^+$ channel, respectively, did not elicit any significant effect. However, $Ba^{2+}$($1{\sim}2mM$), blocker of inward rectifier $K^+$ channels($K_{IR}$ channel), produced phasic contraction in a reversible manner, which was blocked by $1{\mu}M$ nicardipine, a blocker of dehydropyridine-sensitive voltage-dependent L-type $Ca^{2+}$ channels($VDCC_L$) in smooth muscle membrane. This $Ba^{2+}$-induced phasic contraction was significantly enhanced by $10{\mu}M$ cyclopiazonic acid(CPA) in the frequency and amplitude. Finally, regulation of $Ba^{2+}$-induced contraction was studied by FSK and ISO which are known as adenylyl cyclase activator and $\beta$-adrenergic receptor agonist, respectively. These drugs significantly suppressed the frequency and amplitude of $Ba^{2+}$-induced contraction(p<0.05). These results suggest that $Ba^{2+}$ produces phasic contraction in murine ureteral smooth muscle which can be regulated by FSK and $\beta$-adrenergic stimulation.

Effect of Ca2+ on contractile responses induced by perivascular nerve stimulation in isolated coronary artery of pig

  • Hong, Yong-geun;Shim, Cheol-soo;Kim, Joo-heon
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.4
    • /
    • pp.702-709
    • /
    • 1999
  • The present study was performed to elucidate the effects of extracellular $Ca^{2+}$ on contractile responses in isolated porcine coronary artery ring using by perivascular nerve stimulation (PNS). Especially, the study was focused on the source of $Ca^{2+}$ on $P_{2X}$-purinoceptor mediated muscle contraction which one of $P_2$-purinoceptor subtypes. The following results can be drawn from these studies : 1. The phasic contractions induced by PNS were inhibited with muscarinic receptor antagonist, atropine ($10^{-6}M$). 2. The phasic contractions induced by PNS were significantly inhibited by sequential treatment with atropine and adrenergic neural blocker, guanethidine ($10^{-6}M$). 3. The phasic contractions induced by PNS were inhibited with $P_{2X}$-purinoceptor desensitization by repetitive application of $\alpha$,$\beta$-Me ATP ($10^{-4}M$). 4. The phasic contractions induced by PNS were so weakened in calcium-free medium. 5. The phasic contractions induced by PNS were inhibited with calcium channel blocker, verapamil ($10^{-6}{\sim}5{\times}10^{-6}M$). 6. The phasic contractions induced by PNS on pretreated with verapamil ($10^{-6}{\sim}5{\times}10^{-6}M$) were not changed by $\alpha$,$\beta$-Me ATP ($10^{-4}M$). These results demonstrate that the neurogenic phasic contractions induced by PNS are due to adrenergic-, cholinergic- and $P_{2X}$-purinergic receptors and the origin of $Ca^{2+}$ on $P_{2X}$-purinoceptor mediated muscle contraction is extracellular $Ca^{2+}$ through plasmalemmal $Ca^{2+}$ channels.

  • PDF

Effects of Ponciri Fructus on Spontaneous Phasic Contractions of Colon in Rats (지실이 대장의 위상성 자발수축운동에 미치는 영향)

  • Choi, Chul-Won;Lee, Moon-Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1518-1524
    • /
    • 2008
  • Ponciri Fructus (PF), the immature fruit of Poncirus trifoliata, has been used for treatment of constipation in Korean traditional medicine. It has been reported that PF has a prokinetic effect on gastrointestinal tract, but little is known about the effect on colonic contraction. The aim of this study was to investigate the effect of PF on spontaneous contractions of proximal and distal colon in rats. The aqueous extract of PF was centrifuged and filtered and its supernatant was used for in vitro motility study. The removed colon from rats was divided into proximal and distal segments. Each segment was mounted in a 10 ml organ bath and measured the change of the spontaneous contraction with increasing dose (1, 5, 10, 50, 100, 500, $1000{\mu}g/ml$) of PF extract administration. Also the effect of PF on the spontaneous contraction was measured under treatment of atropine, acetylcholine (Ach), and tetrodotoxin (TTX). PF increased the spontaneous phasic contraction of distal colon dose dependently, but there was no change in proximal colon. The contractile response induced by PF in distal colon was lower than that of Ach and was partially blocked by atropine ($10^{-6}M$). TTX increased the spontaneous contraction and it was reinforced with Ach addition. But the extract of PF had no or little contractile effect of TTX in colon. PF increased spontaneous contractions selectively in distal colon. The prokinetic effect of PF may be due to enhancement of cholinergic related excitatory neural system.

Relaxation Patterns of Human Gastric Corporal Smooth Muscle by Cyclic Nucleotides Producing Agents

  • Kim, Young-Chul;Choi, Woong;Sung, Ro-Hyun;Kim, Heon;You, Ra-Young;Park, Seon-Mee;Youn, Sei-Jin;Kim, Mi-Jung;Song, Young-Jin;Xu, Wen-Xie;Lee, Sang-Jin;Yun, Hyo-Yung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.503-510
    • /
    • 2009
  • To elucidate the mechanism of cyclic nucleotides, such as adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP), in the regulation of human gastric motility, we examined the effects of forskolin (FSK), isoproterenol (ISO) and sodium nitroprusside (SNP) on the spontaneous, high $K^+$ and acetylcholine (ACh)-induced contractions of corporal circular smooth muscle in human stomach. Gastric circular smooth muscle showed regular spontaneous contraction, and FSK, ISO and SNP inhibited its phasic contraction and basal tone in a concentration-dependent manner. High $K^+$ (50 mM) produced sustained tonic contraction, and ACh $(10\;{\mu}M)$ produced initial transient contraction followed by later sustained tonic contraction with superimposed phasic contractions. FSK, ISO and SNP inhibited high $K^+$-induced tonic contraction and also ACh-induced phasic and tonic contraction in a reversible manner. Nifedipine $(1\;{\mu}M)$, inhibitor of voltage-dependent L-type calcium current $(VDCC_L)$, almost abolished ACh-induced phasic contractions. These findings suggest that FSK, ISO and SNP, which are known cyclic nucleotide stimulators, inhibit smooth muscle contraction in human stomach partly via inhibition of $VDCC_L$.

Effects of Endothelium on ${\alpha}_1$-and ${\alpha}_2$-adrenoceptor Agonist-induced Contraction in the Rat Isolated Aorta (흰쥐 적출 대동맥에서 ${\alpha}_1$-수용체 효능약과 ${\alpha}_2$-수용체 효능약의 혈관수축반응에 대한 내피세포의 영향)

  • Chung, Joon-Ki;Hong, Sung-Cheul;Choi, Su-Kyung;Kang, Maeng-Hee;Ku, Mi-Geong;Park, Sang-Il;Yun, Il
    • YAKHAK HOEJI
    • /
    • v.34 no.3
    • /
    • pp.180-191
    • /
    • 1990
  • A comparison was made of the effects of selective ${\alpha_1}-adrenoceptor$ agonist phenylephrine and selective ${\alpha_2}-adrenoceptor$ agonist clonidine on endothelium-containing and endothelium-denuded rings of the rat aorta. In the case of phenylephrine, removal of endothelium increased sensitivity 2.5 fold at $EC_{50}$ level and maximum contractive response 1.4 fold. In the case of clonidine, which gave only 15% of maximum contractive response given to phenylephrine on endothelium-containing rings, removal of the endothelium increased sensitivity 5.6 fold at $EC_{50}$ level and maximum contractive response 5 fold, which was about 55% of that given by phenylephrine. In endothelium-denuded ring, phenylephrine-induced contraction tended to be more increased in tonic contraction than in phasic contraction as compared to that in endothelium-containing ring, while clonidine-induced contraction was monophasic and was increased only in tonic contraction. In the calcium-free solution or in the presence, of verapamil, contraction stimulated by clonidine was almost abolished while that stimulated by phenylephrine produced only phasic contraction. The depression of sensitivity to these agonists in rings with endothelium appeared to be due to the vasodepressor action of endothelium derived relaxing factor (EDRF), because hemoglobin, a specific blocking agent of EDRF, abolished this depression. It is unlikely that the endothelium-dependent relaxation was due to stimulation of release of EDRF, because clonidine did not produce endothelium-dependent relaxation in 5-hydroxytryptamine-precontracted ring even when its contractile action was blocked by the ${\alpha_1}-adrenoceptor$ antagonist, prazosin. When the efficacy of phenylephrine was reduced to about the initial efficacy of clonidine by pretreatment with dibenamine, the contraction-response curves for phenylephrine became very similar to the corresponding curves obtained for clonidine before receptor inactivation. In the dibenamine-treated rings, contraction of phenylephrine was abolished in calcium-free solution or in the presence of verapamil like that obtained for clonidine before receptor inactivation. These results suggest that EDRF spontaneously released from endothelium depress contraction more profoundly in a case of an agonist with low efficacy and the phenylephrine-induced contraction was totally dependent on extracellular calcium as was that obtained for clonidine when the efficacy of phenylephrine was reduced to that of clonidine by irreversible inactivation of ${\alpha_1}-adrenoceptor$ with dibenamine.

  • PDF

The inhibitory action of nitric oxide donor on the slow wave and spontaneous contraction in the guinea pig antral circular muscle (기니피그 유문부 윤상근의 서파 몇 자발적 수축에 대한 nitric oxide donor의 억제적 작용)

  • Kim, Tea-wan;La, Jun-ho;Yang, Il-suk
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.4
    • /
    • pp.691-699
    • /
    • 2000
  • We investigated the effects of nitric oxide (NO) donors, S-nitroso-L-cysteine (Cys-NO) and 3-morpholinosydnonimine hydrochloride (SIN-1), on the contractile and electrical activity of the circular muscle of guinea pig gastric antrum by using intracellular microelectrode technique. The gastric antral circular muscle showed spontaneous phasic contraction and slow wave of membrane potential. Cys-NO ($0.001{\sim}10{\mu}M$) and SIN-1 ($0.001{\sim}100{\mu}M$) reduced not only the tonic and phasic contraction but also the amplitude of slow wave in a concentration dependent manner. NO donors were more potent to inhibit phasic contraction than to do slow wave. These inhibitory effects of NO donors were mimicked by the membrane permeable guanosine-3',5'-cyclic monophosphate (cGMP) analogue, 8-bromo-cyclic GMP (8-br-cGMP, $10{\sim}300{\mu}M$). The inhibitory effects of SIN-1 and Cys-NO were antagonized by the guanylate cyclase inhibitor, 1H[ [1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, $10{\mu}M$). These results suggest that the inhibitory effects of NO donors on the mechanical and electrical activity is mainly mediated by cGMP pathway.

  • PDF

Synthesis and Biological Activities of Myomodulin A and Its Analogs (Myomodulin A 및 유도체들의 합성 및 생리활성)

  • Park, Nam-Gyu
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.387-397
    • /
    • 2012
  • In this study, we focused on myomoduline A (MMA) released from the central nervous system of Aplysia kurodai. The primary structure of MMA is Pro-Met-Ser-Met-Leu-Arg-Leu-$NH_2$. This peptide is the same as that of the myomodulin family peptide found in other mollusks. The purified MMA showed a modulating activity of phasic contraction on the anterior byssus retractor muscle (ABRM) of Mytilus edulis. In order to study the relationship between the structure and biological activity of MMA, we synthesized MMA, Des[$Pro^1$]-MMA, Des[$Pro^1,Met^2$]-MMA, Des[$Pro^1,Met^2,Ser^3$]-MMA, and MME. The amino acid sequences of Des[$Pro^1$]-MMA, Des[$Pro^1,Met^2$]-MMA, and Des[$Pro^1,Met^2,Ser^3$]-MMA were Met-Ser-Met-Leu-Arg-Leu-$NH_2$, Ser-Met-Leu-Arg-Leu-$NH_2$, and Met-Leu-Arg-Leu-$NH_2$, respectively. MMA and synthetic peptides were tested on ABRM in M. edulis as well as muscle preparations in Achatina fulica. At $1{\times}10^{-8}$ M or lower, MMA showed a potentiating effect on phasic contraction of the ABRM, but this peptide had an inhibitory effect at $1{\times}10^{-6}$ M or higher. Both MMA and its analogs stimulated a contractile response on the crop and a relaxed catch-relaxing response on the penial retractor muscle of A. fulica. These results suggest that Met-Leu-Arg-Leu-$NH_2$ in MMA is the minimum structure required for the regulation of the contraction of ABRM, as well as the reproductive and digestive activities of mollusks.

Nonadrenergic Noncholinergic Nerve-mediated Contraction of the Longitudinal Muscle of Rat Ileum (랫드 회장 종주근의 비아드레날린 비콜린성 신경에 의한 수축반응)

  • Kim, Tae-wan;La, Jun-ho;Sung, Tae-sik;Kang, Jung-woo;Yang, Il-suk;Han, Ho-jae
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.3
    • /
    • pp.405-414
    • /
    • 2003
  • The purpose of this study was to assess the role of tachykinins (TK) in mediating nonadrenergic noncholinergic (NANC) contractions produced by electrical field stimulation (EFS) in the longitudinal muscle of the rat ileum. In the presence of atropine ($1{\mu}M$), guanethidine ($5{\mu}M$), and L-nitroarginine (L-NNA, $200{\mu}M$), EFS (0.5ms pulse duration, 120 V, 1-20 Hz for 2 min) produced a frequency-dependent slowly-developing tonic contraction with superimposed phasic contractions ('on'-contraction) followed by off slowly-decreasing tonic and superimposed phasic contractions ('off'-contraction) of mucosa-free longitudinal oriented muscle strip. These EFS induced responses were blocked by tetrotoxin. $NK_1$ receptor selective antagonist L-732,138 strongly inhibited the EFS-induced excitatory responses. However $NK_2$ receptor selective antagonist, GR 159897 and $NK_3$ receptor selective antagonist SB 222200 did not significantly inhibited the responses. $NK_1$ receptor selective agonist [$Sar^9$,$Met(O_2)^{11}$] Substance P and $NK_2$ receptor selective agonist [${\beta}-Ala^8$]-neurokinin A (4-10) induced tonic contraction with superimposed phasic contractions of longitudinal oriented muscle strip and almost blocked by selective antagonist L-732,138 and GR 159897, respectively. But $NK_3$ receptor selective agonist senktide did not showed any effect. Nifedipine ($1{\mu}M$) abolished the contraction produced either by EFS or by the TK receptor agonists [$Sar^9$,$Met(O_2)^{11}$] Substance P or [${\beta}-Ala^8$]-neurokinin A (4-10). It is concluded that, in the longitudinal muscle of rat ileum, both $NK_1$ and $NK_2$ receptors modulated the responses to exogenous tachykinins, whereas $NK_1$ is mainly involved in NANC neuromuscular contraction.

Involvement of Ca2+ and K+ channels in the action of NO on gastric circular muscle (기니피그 유문부 윤상근의 자발적 수축 및 서파에 대한 nitric oxide의 억제적 작용과 Ca2+ 및 K+ 통로의 관련성)

  • Kim, Tae-wan;La, Jun-ho;Yang, Il-suk
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.4
    • /
    • pp.485-495
    • /
    • 2001
  • It was investigated whether $Ca^{2+}$ and $K^+$ channels were involved in the inhibitory action of nitric oxide (NO) on the contractile and slow wave activity of guinea pig gastric antral circular muscle. The gastric antral circular muscle showed spontaneous phasic contraction and slow wave. NO donors, 3-morpholinosydnonimine hydrochloride (SIN-1, $0.01{\sim}100{\mu}M$) and S-nitroso-L-cysteine (CysNO, $0.001{\sim}10{\mu}M$), reduced not only the amplitude of phasic contraction but also that of slow wave in a concentration-dependent manner. Both the perfusion of $Ca^{2+}$-free solution and the administration of $Ni^{2+}$, a nonselective $Ca^{2+}$ channel blocker, reduced the phasic contraction as well as the amplitude and frequency of the slow wave. The effects of these treatments were similar to those of NO donors. Nifedipine ($10{\mu}M$), a specific L-type $Ca^{2+}$ channel blocker, abolished the phasic contraction and remarkably reduced the plateau of slow wave but had no profound effect on the upstroke of slow wave. In the whole-cell patch clamp mode, CysNO shifted the steady-state activation curve for L-type $Ca^{2+}$ current to the right and the steady-state inactivation curve to the left. Pretreatment of various $K^+$ channel blockers such as tetraethylammonium (1 mM), 4-aminopyridine (0.5 mM), glibenclamide (10 mM), apamin ($0.1{\mu}M$), and iberiotoxin ($0.1{\mu}M$) did not affect the inhibitory action of SIN-1. These results suggest that NO donors suppress mechanical and electrical activity of guinea pig gastric antral circular muscle by inhibition of L-type $Ca^{2+}$ channel rather than by activation of $K^+$ channels.

  • PDF