• Title/Summary/Keyword: phased radar array

Search Result 102, Processing Time 0.018 seconds

A Study on Sample Frequency Channel Selection of Near-Field Receiving Measurement for the Active Phased Array Antenna for Mono-Pulse Accuracy (모노펄스 정확도를 위한 능동배열위상레이다의 근접전계 수신시험 표본 주파수 채널 선택에 대한 연구)

  • Kwon, Yong-Wook;Yoon, Jae-Bok;Yoo, Woo-Sung;Jang, Heon-Soon;Kim, Do-Yeol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.318-327
    • /
    • 2017
  • It is essential for the near-field receiving measurement to make beam pattern and check the performance of a active phased array antenna system. Also, we could obtain compensation value for mono-pulse function through the near-field receive test, however, if the radar has many frequency channel, the test would take long time and hard effort. So it is needed that frequency channels are selected for measurement and calculates the values for other frequency channels to improve efficiency in development and manufacture. In this case, the phase variations in sum and del channels would be checked. The phase measurement includes un-linear characteristic because of wrapping effect. Generally, radars have similar path length in sum and del channel, but if a radar has a electrical length gap between sum and del channel, errors could occur by phase's wrapping effect. In this paper, the interpolation method's error caused by electrical length gap is checked and the effective method for frequency channel selection to avoid wrapping effect is introduced.

An Analysis on the Degradation of Elevation Angle Accuracy Due to the Multi-Path Effect Using a Phased Array Antenna and the Beam Pattern Optimization to Minimize Its Degradation (위상배열 안테나를 활용한 다중 경로 효과에 의한 고각 정확도 열화 분석 및 열화 최소화를 위한 빔 패턴 최적화)

  • Kim, Young-Wan;Lee, JaeMin;Chae, Heeduck;Jin, Hyung-suk;Park, Jongkuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1036-1043
    • /
    • 2016
  • In this paper, an analysis about the elevation angle accuracy degradation of an APAR(Airport Precision Approach Radar) due to the multi-path effect using a phased array antenna was performed. An APAR installed around a runway of airport will be continuously affected in a runway surface of the fixed environment. In this paper, an analysis about the elevation angle accuracy degradation of APAR due to the multi-path effect of runway surface was conducted through a calculation of monopluse slope and sum/difference beam pattern analysis of array antenna. Also, a difference pattern for monopulse to minimize this degradation was optimized in an appropriate configuration to improve a elevation angle accuracy. Finally, a degree of improvement of elevation angle accuracy was confirmed by calculating a monopulse slope including the ground reflection after applying optimized difference patterns of array antenna.

A Study of T/R Module Output Compensation Method for Active Synthetic Aperture Radar (능동형 SAR 시스템의 송수신 모듈 출력 보정 방법 연구)

  • Yi, Dong-Woo;Lee, Jong-Hwan;Kim, Se-Young;Jeon, Byoung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.955-964
    • /
    • 2010
  • In this paper, a compensation method of the amplitude and phase errors from the T/R(Transmit/Receive) modules in an active SAR(Synthetic Aperture Radar) system is introduced. The errors are defined and classified, and characterized by analyzing the measurement data acquired from the pilot test. To compensate these errors, a control methodology of T/R modules output is proposed. Before the compensation is applied, 16 T/R modules integrated on the active SAR antenna show the amplitude in 28.2~29.0 dBm and the phase in $101.7^{\circ}{\sim}165.2^{\circ}$. After the compensation, the amplitude and phase are distributed in 27.4~28.0 dBm and $116.1^{\circ}{\sim}120.0^{\circ}$ respectively. The antenna beam patterns generated by the array theory with the distributions are compared, and the proposed method is verified as good to apply for the active SAR system.

Efficient Implementation of FMCW Radar Signal Processing Parts Using Low Cost DSP (저가형 DSP를 사용하는 FMCW 레이더 신호처리부의 효율적 구현 방안)

  • Oh, Woojin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.707-714
    • /
    • 2016
  • Active driving safety systems for vehicle, such as the front collision avoidance, lane departure warning, and lane change assistance, have been popular to be adopted to the compact car. For improving performance and competitive cost, FMCW radar has been researched to adopt a phased array or a multi-beam antenna, and to integrate the front and the side radar. In this paper we propose several efficient methods to implement the signal processing module of FMCW radar system using low cost DSP. The pulse width modulation (PWM) based analog conversion, the approximation of time-eating functions, and the adoption of vector-based computation, etc, are proposed and implemented. The implemented signal processing board shows the real-time performance of 1.4ms pulse repetition interval (PRI) with 1024pt-FFT. In real road we verify the radar performance under real-time constraints of 10Hz update time.

A Study on Clutter Cancellation in a Weather Radar System Using a Phased Array Antenna (위상배열 안테나를 활용한 기상 레이다 시스템에서의 클러터 제거에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1173-1179
    • /
    • 2008
  • Since there are very strong clutter returns in airborne and ground weather radars used for the detection of low altitude weather hazards, the reliable weather data cannot be extracted from the weak Doppler weather signal without cancellation of these strong clutter returns. However, the clutter cancellation in Doppler frequency domain is not an easy task since even the fixed clutter returns not to mention the moving clutter can have Doppler shifts due to the antenna rotation and operational environment. Therefore, it was shown in this paper a simple array antenna system can be used for the efficient clutter cancellation in the spatial domain. The weather signal, various moving and fixed clutters were modelled and simulated to prove the performance of this adaptive array system. Also, the degree of accuracy in pulse-pair estimates of a weather radar was compared and analyzed from the simulated weather data.

Verification of Radiation and Beam-Steering Characteristics for Planar-Phased Array Radars Using Near-Field Beam Focusing (근전계 빔 집속 시험 기법을 활용한 평면위상배열레이다 시스템 복사 및 빔 조향 특성 검증)

  • Kim, Young-Wan;Lee, Jaemin;Jung, Chae-Hyun;Park, Jongkuk;Lee, Yuri;Kim, Jong-Phil;Kim, Sunju
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.160-168
    • /
    • 2019
  • In this study, we propose a verification method for a planar-phased array radar system using a near-field beam focusing(NFBF) test method. We then confirmed the validity of the results. The proposed method can be used to verify a radar system in the near-field range of twice the antenna aperture size, and this is done in the same manner as the field system performance test conducted in a non-outdoor electromagnetic anechoic chamber. The test configuration and procedure for verifying the NFBF using near-field energies were reviewed. In addition, the phase compensation values of additional individual channels were quantified through mathematical verification of the beam-steered NFBF test. Based on a theoretical verification, the actual NFBF test was performed and the validity of the test method was confirmed through comparison with ideal analytical results.

A Design and Fabrication of the X-Band Transmit/Receive Module for Active Phased Array SAR Antennas (능동 위상 배열 SAR 안테나를 위한 X-대역 송수신 모듈의 설계 및 제작)

  • Chong, Min-Kil;Kim, Sang-Keun;Na, Hyung-Gi;Lee, Jong-Hwan;Yi, Dong-Woo;Baik, Seung-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1050-1060
    • /
    • 2009
  • In this paper, a X-Band T/R-module for SAR(Synthetic Aperture Radar) systems based on active phased array antennas is designed and fabricated. The T/R modules have a and width of more than 800 MHz centered at X-Band and support dual, switched polarizations. The output power of the module is 7 watts over a wide bandwidth. The noise figure is as low as 3.9 dB. Phase and amplitude are controlled by a 6-bit phase shifter and a 6-bit digital attenuator, respectively. Further the fabricated T/R module has est and calibration port with directional coupler and power divider. Highly integrated T/R module is achieved by using LTCC(Low Temperature Co-fired Ceramic) multiple layer substrate. RMS gain error is less than 0.8 dB max. in Rx mode, and RMS phase error is less than $4^{\circ}$ max. in Rx/Tx phase under all operating frequency band, or the T/R module meet the required electrical performance m test. This structure an be applied to active phase array SAR Antennas.

Radar Return Signal Simulation Equipment Using MC-DDS (Multi-Channel Direct Digital Synthesis) (다채널 직접 디지털 합성을 이용한 레이더 반사 신호 모의 장치)

  • Roh, Ji-Eun;Yang, Jin-Mo;Yoo, Gyung-Joo;Gu, Young-Suk;Lee, Sang-Hwa;Song, Sung-Chan;Lee, Hee-Young;Choi, Byung-Gwan;Lee, Min-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.966-980
    • /
    • 2011
  • Radar receiving echo signal provides target information - range, velocity and position by signal magnitude and Doppler shift, which are determined by target reflection characteristics and target maneuver. Target angle error is extracted from the magnitude ratio of difference channel to sum channel. In this paper, we introduce a radar Return Signal Simulation Equipment(RSSE) which is implemented for the purpose of performance analysis and evaluation of phased array multi-function radar(MFR). It generates multi-target environment with jamming signals using MC-DDS (Multi-Channel Direct Digital Synthesis), and has scalability by using the efficient hardware configuration. The performance of the developed RSSE has been evaluated under various test environments. Especially, we proved that required target detection performance is achieved by RSP(Radar Signal Processor) interfaced RSSE configuration.

Analysis of the relationship between volcanic eruption and surface deformation in volcanoes of the Alaskan Aleutian Islands using SAR interferometry

  • Lee, Seulki;Lee, Chang-Wook
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.1069-1080
    • /
    • 2018
  • The Alaskan Aleutian Islands form one of the world's largest volcanic island chains. The islands are exposed to both direct and indirect damage from continuous volcanic eruptions. Surface deformation is mostly observed before volcanic eruption, but with some volcanoes, such as Ontake Volcano, deformations cannot be detected. In this study, we analyzed volcanic eruptions in the Alaskan Aleutian Islands, which is a region of frequent volcanic eruptions. Based on our results, we predicted the type of eruption that would occur on Baekdusan Volcano according to the presence or absence of surface deformation. For this purpose, 10 sites were selected from areas where recent volcanic activity had occurred in the Aleutian Islands. Additionally, Advanced Land Observing Satellite Phased Array-type L-band Synthetic Aperture Radar (ALOS-PALSAR) and European Remote Sensing (ERS)-1/2 satellite data were obtained from 10 experimental sites. Based on the radar satellite data, the volcanic surface deformations were identified, and the characteristics of the volcanic eruption were quantitatively calculated by determining the presence of surface deformation. The results of this study should facilitate the process of correlation between volcanic eruption and surface deformation.

Advanced signal processing for enhanced damage detection with piezoelectric wafer active sensors

  • Yu, Lingyu;Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.185-215
    • /
    • 2005
  • Advanced signal processing techniques have been long introduced and widely used in structural health monitoring (SHM) and nondestructive evaluation (NDE). In our research, we applied several signal processing approaches for our embedded ultrasonic structural radar (EUSR) system to obtain improved damage detection results. The EUSR algorithm was developed to detect defects within a large area of a thin-plate specimen using a piezoelectric wafer active sensor (PWAS) array. In the EUSR, the discrete wavelet transform (DWT) was first applied for signal de-noising. Secondly, after constructing the EUSR data, the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used for the time-frequency analysis. Then the results were compared thereafter. We eventually chose continuous wavelet transform to filter out from the original signal the component with the excitation signal's frequency. Third, cross correlation method and Hilbert transform were applied to A-scan signals to extract the time of flight (TOF) of the wave packets from the crack. Finally, the Hilbert transform was again applied to the EUSR data to extract the envelopes for final inspection result visualization. The EUSR system was implemented in LabVIEW. Several laboratory experiments have been conducted and have verified that, with the advanced signal processing approaches, the EUSR has enhanced damage detection ability.