• Title/Summary/Keyword: phase transition

Search Result 1,982, Processing Time 0.038 seconds

Emulsion Inversion and Emulsion Transition (에멀젼 변환과 에멀젼 전이)

  • Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.267-273
    • /
    • 2004
  • It has been 40 years since emulsion inversion was observed. Emulsion inversion is a phenomenon in which O/W emulsion inverts to W/O emulsion or vice versa. In other words, the dispersed and continuous phase of an emulsion is reversed after emulsion inversion takes place. For three-phase emulsions, not only emulsion inversion but also emulsion transition has been observed. In emulsion transition the continuous phase of an emulsion remains unchanged, but the dispersed emulsion drops, which is basically a two-phase emulsion, experience emulsion inversion at a certain temperature. Such temperature is called the emulsion transition temperature. Emulsion transition was a product of theoretical speculation and was experimentally observed for a couple of ternary amphiphile/oil/water systems. This phenomenon is a novel one, which has been unreported to date. In this article emulsion inversion and emulsion transition are compared and discussed.

Synchrotron SAXS Study on the Micro-Phase Separation Kinetics of Segmented Block Copolymer

  • Lee, Han-Sup;Yoo, So-Ra;Seo, Seung-Won
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.98-107
    • /
    • 2001
  • The phase transition behavior isothermal micro-phase separation kinetics of polyester-based thermoplastic elastomer were studied using the synchrotron X-ray scattering(SAXS) method. The structural changes occurring during heating period were investigated by determining the changes of the one-dimensional correlation function, interfacial thickness and Porod constant. Based on the abrupt increases of the domain spacing and interfacial thickness, a major structural change occurring well below the melting transition temperature is suggested. Those changes are explained in terms of melting of the thermodynamically unstable hard domains or/and the interdiffusion of the hard and soft segments in the interfacial regions. SAXS profile changes during the micro-phase separation process were also clearly observed at various temperatures and the separation rate was found to be sensitively affected by the temperature. The peak position of maximum scattering intensity stayed constant during the entire course of the phase separation process. The scattering data during the isothermal phase separation process was interpreted with the Cahn-Hilliard diffusion equation. The experimental data obtained during the early stage of the phase separation seems to satisfy the Cahn-Hilliard spinodal mechanism. The transition temperature obtained from the extrapolation of the diffusion coefficient to zero value turned out to be about 147$\pm$$2^{\circ}$, which is close to the order-disorder transition temperature obtained from the Porod analysis. The transition temperature was also estimated from the inveriant growth rate. By extrapolating the inveriant growth rate to zero, a transition temperature of about 145$\pm$$\pm$$2^{\circ}$ was obtained.

  • PDF

Phase Transformation of Two-Dimensional Transition Metal Dichalcogenides

  • Kim, Jaemin;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.48 no.2
    • /
    • pp.43-48
    • /
    • 2018
  • Transition metal dichalcogenide (TMD) materials have distinctive structures in comparison with other two-dimensional materials. TMD materials' structure is held together by van der Waals and covalent intralayer interactions; consequently, TMDs exhibit multiple phases and properties depending on their structure. This article reviews some of the research currently being undertaken to control TMD phases to utilize their different properties. This review introduces some trials for changing the phase of TMDs.

A study on the phase transition characteristics of the $Ba(La_{1/2} Nb_{1/2})O_3-Pb(Zr, Ti)O_3$ ceramics ($Ba(La_{1/2} Nb_{1/2})O_3-Pb(Zr, Ti)O_3$ 세라믹의 상전이 특성에 관한 연구)

  • 류기원;배선기;박인길;이영희
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.190-195
    • /
    • 1995
  • Temperature dependences of the dielectric constant K(T), remanent polarization $P_{r}$, (T), effective birefringence overbar .DELTA.n(T), transmitted light intensity and quadratic electro optic coefficient R(T) of the two-stage sintered xBa(L $a_{1}$2/N $b_{1}$2/) $O_{3}$-(1-x)Pb(Z $r_{y}$ $Ti_{1-y}$) $O_{3}$(x=0.085, 0.09, 0.40.leq.y.leq.0.70) ceramics were investigated. Increasing the PbZr $O_{3}$ contents, the crystal structure of a specimen was changed from a tetragonal phase to a rhombohedral and cubic phase, and the phase transition was showed a diffuse phase transition(DPT) characteristics. In the compositions which located on the PE-FE phase boundary, the discrepancy was observed between the Curie temperature and temperature which a microscopic polarization and effective birefringence were disappeared.red.d.

  • PDF

Electrical Phase Transition of Poly (4,4'-Aminotriphenylene Hexafluoroisopropylidenediphthalimide) by Photogenerated Charged Carrier Injection

  • Im, Gyu-Uk;Lee, Gyeong-Jae;Lee, Mun-Ho;Gang, Tae-Hui;Jeong, Seok-Min;Yang, Mi-Hyeon;Kumar, Yogesh
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.266-266
    • /
    • 2013
  • We show a set-up of poly (4,4'-aminotriphenylene hexafluoroisopropylidenediphthalimide) (6F-TPA PI)/Al sample in which holes are injected by photoelectron emission process instead of direct charge carrier injection via metal electrode. In this process, an irreversible electrical phase transition of 6F-TPA PI is found in contrast to the Al/6F-TPA PI/Al structure, leading to a write-once-readmany behavior. The photoelectron spectroscopy results measured before and after the switching process revealed that the irreversible electrical phase transition of 6F-TPA PI is attributed to the chemical modification of the carbonyl group in phthalimide moiety.

  • PDF

A study on phase transition of Hydrogel: (I)Volume Phase Transition of N-Isopropylacrylamide gel (수화겔의 상전이에 관한 연구: (I)폴리(N-이소프로필아크릴아미드)겔의 부피상전이)

  • Park, Sang-Bo;Min, Seong-Kee
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.21 no.1
    • /
    • pp.11-20
    • /
    • 2003
  • Equilibrium swelling curves of N-isopropyl acrylamide(NIPA) gel and its ionized copolymer gels were obtained as a function of temperature. Discontinuous volume changes of the gels were observed. Phase transition temperature was increased with the ionized counter parts of the gels. Equilibrium swelling of ionized copolymer gel cylinder was found to depend strongly on their diameters. Crosslinking density of NIPA gel was adjusted by increasing N,N'-methylenebisacrylamide(BIS). Phase transition temperature was increased with the crosslinking density.

  • PDF

A study on phase transition of Hydrogel: (II)Solubility of N-Isopropylacrylamide Gel (수화겔의 상전이에 관한 연구 : (II)폴리(N-이소프로필아크릴아미드)겔의 용해도)

  • Park, Sang-Bo;Hwa, Won-Jo
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.21 no.1
    • /
    • pp.81-90
    • /
    • 2003
  • To understand the thermoresponsive volume phase transition of an N-isopropyl acrylamide(NIPA) gel on water, the solubility parameter of neutral NIPA gel was determined by swelling the gel with various solvents. Water was found not to be a good solvent for NIPA gel. Equilibrium swelling curves of NIPA gel were respectively obtained by immersing in pure water, ethanol, n-propanol and some mixed solvents. On adding a small amount of alcohols to water, volume phase transition of NIPA gel in water was changed. Phase transition temperature of this gel was decreased with the increase of the carbon number of alcohol.

  • PDF

The Study on the Characteristic of Phase Transition in Differential Thickness of Se1Sb2Se2 Thin Films

  • Lee Jae-Min;Yang Sung-Jun;Shin Kyung;Chung Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.6
    • /
    • pp.241-243
    • /
    • 2004
  • The phase transition between amorphous and crystalline states in chalcogenide semiconductor films can be controlled by electrical or pulsed laser beam; hence some chalcogenide semiconductor films can be applied to electrically write/erase nonvolatile memory devices, where the low conductive amorphous state and the high conductive crystalline state are assigned to binary states. In this letter, the characteristics of phase transition in differential chalcogenide thin film are investigated. Al was used for the electrode as the thickness of 100, 300, 500 nm, respectively.

A Study on the Phase Transition of DPPC Organic Films (DPPC 유기박막의 상전이에 관한 연구)

  • 김동관;이순형;최영일;최충석;장희동;이경섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.491-494
    • /
    • 2000
  • Conductive Langmuir-Blodgett(LB) films have recently attracted much interest from the viewpoint of ultrathin film conductors at the molecular level. The result shows that the Maxwell-displacement-current(MDC) measuring technique is useful in the detection of phase-transition over the entire range of molecule areas. At the liquid-solid phase transition, a striking feature in the present current measurement was observed; the I-A isotherm for a DPPC monolayer has sharp bend. Dynamic behavior of monolayers in the presence of an external field was also investigated using the current-measuring technique. Dynamic behavier of DPPC monolayer was measured by displacement current when the molecules are stimulated by pressure velocity. As result, it is known that current is generated of higher current pe마 as compression velocity become faster. Also, in order to clarify the reorganization of the lipid monolayers, it is instructive to plot the relationship between I and 1/$A^2$.

  • PDF

The Study on Characteristic of Phase Transition in differential Chalcogenide Thin Films ($Se_1Sb_2Te_2$ 칼코게나이드 박막의 두께에 따른 상변화 특성 연구)

  • Lee, Jae-Min;Yang, Sung-Jun;Shin, Kyung;Chung, Hong-Bay;Kim, Young-Hae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.340-343
    • /
    • 2004
  • The phase transition between amorphous and crystalline states in chalcogenide semiconductor films can controlled by electric pulses or pulsed laser hem: hence some chalcogenide semiconductor films can be applied to electrically write/erase nonvolatile memory devices, where the low conductive amorphous state and the high conductive crystalline state are assigned to binary states. This letters researched into the characteristic of phase change transition in differential Chalcogenide thin films materials. The electrode used Al and experimented on 100nm, 300nm, 500nm respectively.

  • PDF